Schizophrenia Research Forum - A Catalyst for Creative Thinking

Law AJ, Lipska BK, Weickert CS, Hyde TM, Straub RE, Hashimoto R, Harrison PJ, Kleinman JE, Weinberger DR. Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5' SNPs associated with the disease. Proc Natl Acad Sci U S A. 2006 Apr 25 ; 103(17):6747-52. Pubmed Abstract

Comments on News and Primary Papers
Comment by:  William Carpenter, SRF Advisor (Disclosure)
Submitted 22 April 2006
Posted 22 April 2006
  I recommend the Primary PapersComment by:  Stephan Heckers, SRF Advisor
Submitted 29 April 2006
Posted 29 April 2006
  I recommend the Primary Papers

The gene Neuregulin 1 (NRG1) on chromosome 8p has been identified as one of the risk genes for schizophrenia. It is unclear how the DNA sequence variation linked to schizophrenia leads to abnormalities of mRNA expression. This would be important to know, in order to understand the downstream effects of the neuregulin gene on neuronal functioning in schizophrenia.

Law and colleagues explored this question in post-mortem specimens of the hippocampus of control subjects and patients with schizophrenia. This elegant study of the expression of four types of NRG1 mRNA (types I-IV) is exactly what we need to translate findings from the field of human genetics into the field of schizophrenia neuropathology. The findings are complex and cannot be translated easily into a model of neuregulin dysfunction in schizophrenia. I would like to highlight two findings.

First, the level of NRG1 type I mRNA expression was increased in the hippocampus of schizophrenia patients. This confirms an earlier study of NRG1 mRNA expression in schizophrenia. It remains to be seen how this change in NRG1 type I mRNA expression relates to the finer details of neuregulin dysfunction in schizophrenia.

Second, one single nucleotide polymorphism (SNP8NRG243177) of the risk haplotype linked to schizophrenia in earlier studies predicts NRG1 type IV mRNA expression. The SNP determines a binding site for transcription factors, providing clues for how DNA sequence variation may lead, via modulation of mRNA expression, to neuronal dysfunction in schizophrenia. It is exciting to see that we can now test specific hypotheses of molecular mechanisms in the brains of patients who have suffered from schizophrenia. The study by Law et al. is an encouraging step in the right direction.

View all comments by Stephan HeckersComment by:  Bryan Roth, SRF Advisor
Submitted 5 May 2006
Posted 5 May 2006
  I recommend the Primary Papers

I think this is a very interesting and potentially significant paper. It is important to point out, however, that it deals with changes in mRNA abundance rather than alterations in neuregulin protein expression. No measures of isoform protein expression were performed, and it is conceivable that neuregulin isoform protein expression could be increased, decreased, or not changed. A second point is that although statistically significant changes in mRNA were measured, they are modest.

Finally, although multiple comparisons were performed, the authors chose not to perform Bonferroni corrections, noting in the primary paper that, "Correction for random effects, such as Bonferroni correction, would be an excessively conservative approach, particularly given that we have restricted our primary analyses to planned comparisons (based on strong prior clinical association and physical location of the SNPs) of four SNPs and a single haplotype comprised of these SNPs. Because the SNPs are in moderate LD, the degree of independence between markers is low and, therefore, correcting for multiple testing would result in a high type II error rate. The prior probability and the predictable association between the deCODE haplotype and expression of NRG1 isoforms (especially type IV, which is its immediate physical neighbor) combined with the LD between SNPs in this haplotype makes statistical correction for these comparisons inappropriate. Nevertheless, our finding regarding type IV expression and the deCODE haplotype and SNP8NRG243177 requires independent replication."

It will thus be important to determine if these changes in neuregulin mRNA isoform abundance are mirrored by significant changes in neuregulin isoform protein expression and if the findings can be independently replicated with other cohorts.

View all comments by Bryan RothComment by:  Patricia Estani
Submitted 9 June 2007
Posted 10 June 2007
  I recommend the Primary Papers