Schizophrenia Research Forum - A Catalyst for Creative Thinking

O'Brien J, Unwin N. Organization of spines on the dendrites of Purkinje cells. Proc Natl Acad Sci U S A. 2006 Jan 31 ; 103(5):1575-80. Pubmed Abstract

Comments on News and Primary Papers
Comment by:  Amanda Jayne Law, SRF Advisor
Submitted 13 February 2006
Posted 13 February 2006

The formation of dendritic spines during development and their structural plasticity in the adult brain are critical aspects of synaptogenesis and synaptic plasticity. Actin is the major cytoskeletal source of dendritic spines, and polymerization/depolymerization of actin is the primary determinant of spine motility and morphogenesis. Some, but not all, postmortem studies in schizophrenia have identified reduced dendritic spine density in neurons of the hippocampal formation and dorsolateral prefrontal cortex (for review, see Honer et al., 2000); however, little is known about the underlying pathogenic mechanisms affecting synaptic function in the disease.

Many different factors and proteins are known to control dendritic spine development and remodeling (see Ethell and Pasquale, 2005). Comprehensive investigation of the effectors and signaling pathways involved in regulating actin dynamics may provide insight into the molecular mechanisms mediating altered cortical microcircuitry in the disease.

David Lewis and colleagues have previously reported reduced spine density in the basilar dendrites of pyramidal neurons in laminar III of the DLPFC (though this is not clearly a laminar-specific finding). In their current study, Hill et al. extended these investigations to examine gene expression levels for members of the RhoGTPase family of intracellular signaling molecules (e.g., Cdc42, Rac1, RhoA, Duo), and Debrin, an F-actin binding protein, all of which are critical signal transduction molecules involved in spine formation and maintenance. Their aim was to determine whether alterations in the expression of one of more molecules may underlie the reduced spine density seen in the disorder. Hill et al. report that reductions in Cdc42 and Duo mRNA are observed in the DLPFC in schizophrenia and correlate with spine density on deep layer III pyramidal neurons. This paper provides preliminary evidence that "gene expression levels of certain mRNAs encoding proteins known to be key regulators of dendritic spines are reduced in the DLPFC in schizophrenia." However, the paper also reports that these two mRNAs are reduced in lamina where significant reductions in spine density are not observed in schizophrenia. These results may suggest, as the authors discuss, that reduced expression of Cdc42 and Duo might contribute to, but is not sufficient to cause reduced, spine density.

Synaptic dysfunction has received increasing attention as a key feature of schizophrenia’s neuropathology and possibly its genetic etiology (Law et al., 2004). Neuregulin 1 (NRG1), a lead schizophrenia susceptibility gene, is known to be a critical upstream regulator of signal transduction pathways modulating cytoskeletal dynamics, playing pivotal roles in synapse formation and function. We have previously reported that isoform-specific alterations of the NRG1 gene and its primary receptor, ErbB4, are apparent in the brain in schizophrenia and related to genetic risk for the disease (Law et al, 2005a, Law et al, 2005b). Altered NRG1/ErbB4 signaling in schizophrenia may be a pathway to aberrant cortical neurodevelopment and synaptic function via dysregulation of specific intracellular signaling pathways linked to actin. The lack of significant alterations in gene expression levels for proteins such as Rac1 and RhoA in the DLPFC (gray matter, as reported by Hill and colleagues) in schizophrenia might be because the primary defect may not lie with the expression of these molecules but with the upstream modulation of their function and activity. Therefore, investigation of the proteins themselves, their phosphorylation status and activity, will be useful in understanding how genes effect molecular pathways that mediate biological risk for schizophrenia. The study of intracellular signaling cascades may be a route to a closer understanding of the biological mechanisms underpinning the association of genes such as NRG1 and ErbB4 with schizophrenia and their relationship to its neuropathology.


Ethell IM, Pasquale EB. Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol. 2005 Feb;75(3):161-205. Epub 2005 Apr 2. Review. Abstract

Honer G, Young C, and Falkai P, 2000. Synaptic Pathology in the Neuropathology of Schizophrenia, Progress and interpretation. Oxford University Press, edited by Paul J Harrison and Gareth W. Roberts, pp105-136.

Law AJ, Weickert CS, Hyde TM, Kleinman JE, Harrison PJ. Reduced spinophilin but not microtubule-associated protein 2 expression in the hippocampal formation in schizophrenia and mood disorders: molecular evidence for a pathology of dendritic spines. Am J Psychiatry. 2004 Oct;161(10):1848-55. Abstract

Law, 2005a. Soc Neurosci Abstract, SFN Annual Meeting, Washington DSC, 2005. Neuregulin1 and schizophrenia: A pathway to altered cortical circuits. Also See SfN 2005 research news: Cortical Deficits in Schizophrenia: Have Genes, Will Hypothesize.

Law 2005b ACNP Abstract, Neuropsychopharmacology, vol. 30, Supplement 1. SNPing away at NRG1 and ErbB4 gene expression in schizophrenia.

View all comments by Amanda Jayne Law