Schizophrenia Research Forum - A Catalyst for Creative Thinking


Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnqvist J, Huttunen M, Gasperoni T, Tuulio-Henriksson A, Pirkola T, Toga AW, Kaprio J, Mazziotta J, Peltonen L. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry. 2005 Nov 1 ; 62(11):1205-13. Pubmed Abstract

Comments on Related News


Related News: Messing with DISC1 Protein Disturbs Development, and More

Comment by:  Anil Malhotra, SRF Advisor
Submitted 21 November 2005
Posted 21 November 2005

The relationship between DISC1 and neuropsychiatric disorders, including schizophrenia, schizoaffective disorder, and bipolar disorder, has now been observed in several studies. Moreover, a number of studies have demonstrated that DISC1 appears to impact neurocognitive function. Nevertheless, the molecular mechanisms by which DISC1 could contribute to impaired CNS function are unclear, and these two papers shed light on this critical issue.

Millar et al. (2005) have followed the same strategy that they so successfully utilized in their initial DISC1 studies, identifying a translocation that associated with a psychotic illness. In contrast to DISC1, in which a pedigree was identified with a number of translocation carriers, this manuscript is based upon the identification of a single translocation carrier, who appears to manifest classic signs of schizophrenia, without evidence of mood dysregulation. Two genes are disrupted by this translocation: cadherin 8 and phosphodiesterase 4B (PDE4B). The researchers' elegant set of experiments provides compelling biological evidence that PDE4B interacts with DISC1 and suggests a mechanism mediated by cAMP for DISC1/PDE4B effects on basic molecular processes underlying learning, memory, and perhaps psychosis. It remains possible that PDE4B (and DISC1) are proteins fundamentally involved in cognitive processes, and that the observed relationship to psychotic illnesses represents a final common pathway of neurocognitive impairment. This would be consistent with data from our group (Lencz et al., in press) demonstrating that verbal memory impairment specifically predicts onset of psychosis in at-risk subjects. Similarly, Burdick et al. (2005) found that our DISC1 risk genotypes (Hodgkinson et al., 2004) were associated with impaired verbal working memory. Finally, Callicott et al. (2005) found that a DISC1 risk SNP, Ser704Cys, predicted hippocampal dysfunction, an SNP which we (DeRosse et al., unpublished data) have also found to link with the primary psychotic symptoms (persecutory delusions) manifested by the patient in the Millar et al. study. This body of evidence supports the notion that these proteins play fundamental roles in the key clinical manifestations of schizophrenia.

Kamiya et al. (2005) provide another potential mechanism for these effects, suggesting that a DISC1 mutation may disrupt cerebral cortical development, hinting that studies examining the role of DISC1 genotypes on brain structure and function in the at-risk schizophrenia pediatric patients may be fruitful.

Taken together, these papers add considerable new data suggesting that DISC1 plays a key role in the etiology of schizophrenia, and places DISC1 at the forefront of the rapidly growing body of schizophrenia candidate genes.

References:
Burdick KE, Hodgkinson CA, Szeszko PR, Lencz T, Ekholm JM, Kane JM, Goldman D, Malhotra AK. DISC1 and neurocognitive function in schizophrenia. Neuroreport 2005; 16(12):1399-1402. Abstract

Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR, Verchinski BA, Meyer-Lindenberg A, Balkissoon R, Kolachana B, Goldberg TE, Weinberger DR. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA 2005; 102(24): 8627-8632. Abstract

Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH, Malhotra AK. Disrupted in Schizophrenia (DISC1): Association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75:862-872. Abstract

Lencz T, Smith CW, McLaughlin D, Auther A, Nakayama E, Hovey L, Cornblatt BA. Generalized and specific neurocognitive deficits in prodromal schizophrenia. Biological Psychiatry (in press).

View all comments by Anil Malhotra

Related News: Messing with DISC1 Protein Disturbs Development, and More

Comment by:  Angus Nairn
Submitted 29 December 2005
Posted 31 December 2005
  I recommend the Primary Papers

This study describes an interesting genetic link between PDE4B (phosphodiesterase 4B) and schizophrenia that may be related to a physical interaction with DISC1 (disrupted in schizophrenia 1), another gene associated with the psychiatric disorder. The study is highly suggestive of a role for the PDE4B/DISC1 complex in schizophrenia. However, the mechanistic model suggested by the authors whereby DISC1 sequesters PDE4B in an inactive state seems overly speculative, given the results presented in this paper and in prior studies that have examined the regulation of PDE4B by phosphorylation in the absence of DISC1.

View all comments by Angus Nairn

Related News: Messing with DISC1 Protein Disturbs Development, and More

Comment by:  Patricia Estani
Submitted 2 January 2006
Posted 2 January 2006
  I recommend the Primary Papers

Related News: Nature Makes a DISC1-Deficient, Forgetful Mouse

Comment by:  Anil Malhotra, SRF AdvisorKatherine E. Burdick
Submitted 7 March 2006
Posted 7 March 2006
  I recommend the Primary Papers

The two latest additions to the burgeoning DISC1 literature provide additional support for a role of this gene in cognitive function and schizophrenia, and suggest that more comprehensive studies will be useful as we move to a greater understanding of its role in CNS function. Koike et al. (2006) found that a relatively common mouse strain has a naturally occurring mutation in DISC1 resulting in a truncated form of the protein, similar in size (exon 7 vs. exon 8 disruptions) to that observed in the members of the Scottish pedigree in which the translocation was first detected. C57/BL/6J mice, into which mutant alleles were transferred, displayed significant impairments on a spatial working memory task similar to one used in humans (Lencz et al., 2003). These data are similar to those observed by our group (Burdick et al., 2005) and others (Callicott et al., 2005; Hennah et al., 2005; Cannon et al., 2005), although no study to date has utilized the same neurocognitive tasks. Lipska et al. (2006) report that genes and proteins (NUDEL, FEZ1) known to interact with DISC1 are also aberrant in schizophrenia postmortem tissue, with some evidence that DISC1 risk polymorphisms also influence expression across the pathway.

Taken together, these two papers suggest that the assessment of genes involved in the DISC1 pathway may be worthwhile in the evaluation of working memory function. To date, most studies have focused on risk alleles within DISC1, with little attention paid to the critical interacting genes. Studies are now underway assessing the relationship between FEZ1 and NUDEL and risk for schizophrenia in a number of populations, as well as studies examining their role in neurocognitive and neuroimaging parameters. Clearly, as the Lipska paper indicates, studies that attempt to assess multiple genes in this pathway will be critical, although the common concern of power in assessing gene-gene interactions, especially across multiple genes, may be a limitation. Moreover, these studies indicate that interaction studies will need to consider additional phenotypes other than diagnosis, and perhaps “purer” tasks of neurocognitive function may be worthwhile, as suggested by Koike et al. Finally, both of these papers underscore the fact that the next wave of genetic studies of schizophrenia will encompass the use of multiple probes, whether with neurocognitive assessments, postmortem analyses, or animal models of disease, amongst others, to fully validate the relationships between putative risk genes and the pathophysiology of schizophrenia and related disorders.

References:

Burdick KE, Hodgkinson CA, Szeszko PR, Lencz T, Ekholm JM, Kane JM, Goldman D, Malhotra AK. DISC1 and neurocognitive function in schizophrenia. Neuroreport 2005; 16(12): 1399-1402. Abstract

Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR, Verchinski BA, Meyer-Lindenberg A, Balkissoon R, Kolachana B, Goldberg TE, Weinberger DR. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8627-32. Epub 2005 Jun 6. Abstract

Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnqvist J, Huttunen M, Gasperoni T, Tuulio-Henriksson A, Pirkola T, Toga AW, Kaprio J, Mazziotta J, Peltonen L. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry, 2005; 62(11):1205-1213. Abstract

Hennah W, Tuulio-Henriksson A, Paunio T, Ekelund J, Varilo T, Partonen T, Cannon TD, Lonnquist J, Peltonen L. A haplotype within the DISC1 gene is associated with visual memory functions in families with high density of schizophrenia. Mol Psychiatry 2005; 10(12):1097-1103. Abstract

Lencz T, Bilder RM, Turkel E, Goldman RS, Robinson D, Kane JM, Lieberman JA. Impairments in perceptual competency and maintenance on a visual delayed match-to-sample test in first episode schizophrenia. Arch Gen Psychiatry 2003; 60(3):238-243. Abstract

View all comments by Anil Malhotra
View all comments by Katherine E. Burdick

Related News: Nature Makes a DISC1-Deficient, Forgetful Mouse

Comment by:  J David Jentsch
Submitted 7 March 2006
Posted 7 March 2006
  I recommend the Primary Papers

In their recent paper, Koike et al. provide new evidence in support of a genetic determinant of working memory function in the vicinity of the mouse DISC1 gene. They report their discovery of a naturally occurring DISC1 deletion variant in the 129S6/SvEv mouse strain that leads to reduced protein expression and that provides a potentially very important new tool for analyzing the cellular and behavioral phenotypes associated with DISC1 insufficiency. Given the strong evidence of a relationship between a cytogenetic abnormality that leads to DISC1 truncation in humans and major mental illness (Millar et al., 2000), this murine model stands to greatly serve our understanding of the molecular and cellular determinants of poor cognition in schizophrenia and bipolar disorder.

The authors are parsimonious in reminding us of the substantial limitations of models such as this. Specifically, the current approach does not allow for a clear statement that the DISC1 gene itself modulates the traits of interest. The DISC1 deletion variant may simply be in linkage disequilibrium with the actual phenotype-determining gene, and/or variation in DISC1 may influence cognition in a manner that is modified by a nearby genetic region. For example, Cannon et al. recently showed that a 4-SNP haplotype spanning DISC1 and an adjacent gene, translin-associated factor X (TRAX) is more predictive of anatomical and cognitive indices of reduced prefrontal cortical and hippocampal function than are any known haplotypes spanning DISC1 only. Clearly, additional consideration of the genetic environment in which DISC1 lies is necessary, and discovery of flanking regions that contain modifiers of the actions of DISC1, and vice versa, would be extremely interesting.

The greatest impact of the paper by Koike et al. is hinged on the fact that mice carrying one or two copies of the deletion variant exhibit poor choice accuracy in a delayed non-match to position task. Specifically, mutant DISC1 mice made fewer correct choices than did wild-type littermate C57 mice. Because a procedure such as this is necessarily psychologically complex, performance failure is hardly prima facie evidence for impairments of spatial working memory, or for prefrontal cortical dysfunction, in general. Nevertheless, the data are remarkable in establishing a phenotypic bridge between species and in laying the foundation for more sophisticated behavioral studies that will narrow in on the psychological constructs and neural systems affected by variation in this genetic region. Through facilitating a greater understanding of the cognitive phenotypes associated with DISC1 variation, the model should open doors to understanding key phenotypic aspects of schizophrenia and bipolar disorder.

References:

Koike H, Arguello PA, Kvajo M, Karayiorgou M, Gogos JA. Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proc Natl Acad Sci U S A. 2006 Feb 16; [Epub ahead of print] Abstract

Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, Devon RS, Clair DM, Muir WJ, Blackwood DH, Porteous DJ. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet. 2000 May 22;9(9):1415-23. Abstract

Cannon TD, Hennah W, van Erp TG, Thompson PM, Lonnqvist J, Huttunen M, Gasperoni T, Tuulio-Henriksson A, Pirkola T, Toga AW, Kaprio J, Mazziotta J, Peltonen L. Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short- and long-term memory. Arch Gen Psychiatry. 2005 Nov;62(11):1205-13. Abstract

View all comments by J David Jentsch

Related News: Nature Makes a DISC1-Deficient, Forgetful Mouse

Comment by:  Kirsty Millar
Submitted 13 March 2006
Posted 13 March 2006
  I recommend the Primary Papers

Disrupted In Schizophrenia 1 was first identified as a genetic susceptibility factor in schizophrenia because it is disrupted by a translocation between chromosomes 1 and 11 in a large Scottish family with a high loading of schizophrenia and related mental illness. Since then, numerous genetic studies have implicated DISC1 as a risk factor in psychiatric illness in several populations. Given the limitations on studies using brain tissue from patients, an obvious next step was to engineer knockout mice, but these have been slow in coming. As a first step toward this, Kioke and colleagues now report an unexpected naturally occurring genetic variant in the 129/SvEv mouse strain.

Kioke et al. report that the 129/SvEv mouse strain carries a 25 bp deletion in DISC1 exon 6, and that this results in a shift of open reading frame and introduction of a premature stop codon. Several embryonal stem cell lines have been isolated for the 129 strain, favoring it for gene targeting studies. However, this strain has a number of well-established behavioral characteristics (http://www.informatics.jax.org/external/festing/mouse/docs/129.shtml). Therefore, to assign any phenotype specifically to the DISC1 deletion variant, the 129 DISC1 variant had to be transferred to a C57BL/6J background, with its own, rather different but equally characteristic behavior (http://www.informatics.jax.org/external/festing/mouse/docs/C57BL.shtml). There were no detectable gross morphological alterations in the prefrontal cortex, cortex, and hippocampus on transferring the 129 DISC1 locus onto the C57BL/6J background. However, the mutation did result in working memory deficits, consistent with several reports linking DISC1 to cognition.

It is difficult to know what phenotype to expect from a mouse model for schizophrenia, but in humans it is widely believed that mutations confer only a susceptibility to developing illness. Many susceptible individuals function apparently normally, although subtle neurological endophenotypes are detectable. In individuals who do go on to develop schizophrenia, cognitive deficits are a major characteristic. These mild cognitive deficits in mice with loss of DISC1 function are therefore close to what we might predict.

The molecular mechanism by which DISC1 confers susceptibility to psychiatric illness is the subject of some debate. Sawa and colleagues have suggested that a mutant truncated protein resulting from the t(1;11) is responsible for the psychiatric disorders in the Scottish family. Millar and colleagues, however, report that there is no evidence for such a hypothetical protein in t(1;11) cell lines, but rather that the levels of DISC1 transcript and protein are reduced, consistent with a haploinsufficiency model. Identification of the deletion in mice may shed further light on this debate, since while the mutation does not affect DISC1 transcript levels, no mutant truncated protein is detectable, even though such a protein might theoretically be produced as a result of the premature stop codon. Moreover, both homozygotes and heterozygotes have cognitive impairment, demonstrating that DISC1 haploinsufficiency is sufficient to affect central nervous system function.

In this initial study, Kioke and colleagues have left many questions unanswered. In particular, the behavioral studies are limited to one working memory task and one test of locomotion. Ideally, a whole battery of behavioral and cognitive tests should be performed. Since 129/SvEv mice reportedly have impaired hippocampal function, high levels of anxiety-like behavior and altered NMDA receptor-related activity, it will be interesting to discover which, if any, of these phenotypes also co-segregate with the 129 DISC1 variant. It is also interesting to note that the 129 strain is effectively a null for full-length DISC1, but with no gross alteration in brain morphology. This has to be reconciled with the observed effect of transient RNAi mediated down-regulated expression in utero (Kamiya et al., 2005) and the possible, but still anecdotal observation of embryonic lethality in experimental DISC1 knockouts.

View all comments by Kirsty Millar

Related News: Messing with DISC1 Protein Disturbs Development, and More

Comment by:  Ali Mohammad Foroughmand
Submitted 16 December 2006
Posted 16 December 2006
  I recommend the Primary Papers