Schizophrenia Research Forum - A Catalyst for Creative Thinking


Navakkode S, Sajikumar S, Frey JU. The type IV-specific phosphodiesterase inhibitor rolipram and its effect on hippocampal long-term potentiation and synaptic tagging. J Neurosci. 2004 Sep 1 ; 24(35):7740-4. Pubmed Abstract

Comments on Related News


Related News: Messing with DISC1 Protein Disturbs Development, and More

Comment by:  Anil Malhotra, SRF Advisor
Submitted 21 November 2005
Posted 21 November 2005

The relationship between DISC1 and neuropsychiatric disorders, including schizophrenia, schizoaffective disorder, and bipolar disorder, has now been observed in several studies. Moreover, a number of studies have demonstrated that DISC1 appears to impact neurocognitive function. Nevertheless, the molecular mechanisms by which DISC1 could contribute to impaired CNS function are unclear, and these two papers shed light on this critical issue.

Millar et al. (2005) have followed the same strategy that they so successfully utilized in their initial DISC1 studies, identifying a translocation that associated with a psychotic illness. In contrast to DISC1, in which a pedigree was identified with a number of translocation carriers, this manuscript is based upon the identification of a single translocation carrier, who appears to manifest classic signs of schizophrenia, without evidence of mood dysregulation. Two genes are disrupted by this translocation: cadherin 8 and phosphodiesterase 4B (PDE4B). The researchers' elegant set of experiments provides compelling biological evidence that PDE4B interacts with DISC1 and suggests a mechanism mediated by cAMP for DISC1/PDE4B effects on basic molecular processes underlying learning, memory, and perhaps psychosis. It remains possible that PDE4B (and DISC1) are proteins fundamentally involved in cognitive processes, and that the observed relationship to psychotic illnesses represents a final common pathway of neurocognitive impairment. This would be consistent with data from our group (Lencz et al., in press) demonstrating that verbal memory impairment specifically predicts onset of psychosis in at-risk subjects. Similarly, Burdick et al. (2005) found that our DISC1 risk genotypes (Hodgkinson et al., 2004) were associated with impaired verbal working memory. Finally, Callicott et al. (2005) found that a DISC1 risk SNP, Ser704Cys, predicted hippocampal dysfunction, an SNP which we (DeRosse et al., unpublished data) have also found to link with the primary psychotic symptoms (persecutory delusions) manifested by the patient in the Millar et al. study. This body of evidence supports the notion that these proteins play fundamental roles in the key clinical manifestations of schizophrenia.

Kamiya et al. (2005) provide another potential mechanism for these effects, suggesting that a DISC1 mutation may disrupt cerebral cortical development, hinting that studies examining the role of DISC1 genotypes on brain structure and function in the at-risk schizophrenia pediatric patients may be fruitful.

Taken together, these papers add considerable new data suggesting that DISC1 plays a key role in the etiology of schizophrenia, and places DISC1 at the forefront of the rapidly growing body of schizophrenia candidate genes.

References:
Burdick KE, Hodgkinson CA, Szeszko PR, Lencz T, Ekholm JM, Kane JM, Goldman D, Malhotra AK. DISC1 and neurocognitive function in schizophrenia. Neuroreport 2005; 16(12):1399-1402. Abstract

Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR, Verchinski BA, Meyer-Lindenberg A, Balkissoon R, Kolachana B, Goldberg TE, Weinberger DR. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA 2005; 102(24): 8627-8632. Abstract

Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH, Malhotra AK. Disrupted in Schizophrenia (DISC1): Association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 2004; 75:862-872. Abstract

Lencz T, Smith CW, McLaughlin D, Auther A, Nakayama E, Hovey L, Cornblatt BA. Generalized and specific neurocognitive deficits in prodromal schizophrenia. Biological Psychiatry (in press).

View all comments by Anil Malhotra

Related News: Messing with DISC1 Protein Disturbs Development, and More

Comment by:  Angus Nairn
Submitted 29 December 2005
Posted 31 December 2005
  I recommend the Primary Papers

This study describes an interesting genetic link between PDE4B (phosphodiesterase 4B) and schizophrenia that may be related to a physical interaction with DISC1 (disrupted in schizophrenia 1), another gene associated with the psychiatric disorder. The study is highly suggestive of a role for the PDE4B/DISC1 complex in schizophrenia. However, the mechanistic model suggested by the authors whereby DISC1 sequesters PDE4B in an inactive state seems overly speculative, given the results presented in this paper and in prior studies that have examined the regulation of PDE4B by phosphorylation in the absence of DISC1.

View all comments by Angus Nairn

Related News: Messing with DISC1 Protein Disturbs Development, and More

Comment by:  Patricia Estani
Submitted 2 January 2006
Posted 2 January 2006
  I recommend the Primary Papers

Related News: Messing with DISC1 Protein Disturbs Development, and More

Comment by:  Ali Mohammad Foroughmand
Submitted 16 December 2006
Posted 16 December 2006
  I recommend the Primary Papers