Schizophrenia Research Forum - A Catalyst for Creative Thinking


Gilman SR, Chang J, Xu B, Bawa TS, Gogos JA, Karayiorgou M, Vitkup D. Diverse types of genetic variation converge on functional gene networks involved in schizophrenia. Nat Neurosci. 2012 Dec ; 15(12):1723-8. Pubmed Abstract

Comments on News and Primary Papers
Comment by:  Patrick Sullivan, SRF AdvisorDanielle Posthuma
Submitted 16 November 2012
Posted 16 November 2012

Gilman et al. pose exceptionally important and salient questions: given that increasingly detailed genomic data have established that many genes are now strongly implicated in the etiology of schizophrenia, how do we understand this? How can these different components of the “parts list” for schizophrenia be pieced together to derive a cogent etiological hypothesis for further testing?

The authors use a new computational approach to address these questions, and derive lists related to axon guidance, neuronal cell mobility, synaptic function, and chromosomal remodeling. Additional analyses suggest the coherence of their lists. These are good clues that deserve further evaluation.

It was intriguing that the authors included multiple types of genetic variation—rare but potent copy number variants (e.g., Kirov et al., 2012), rare exonic mutations (Xu et al., 2012), and common variations from genomewide association studies (Ripke et al., 2011)—as most authors have tended to conduct these analyses separately.

In sum, a nice contribution to the literature and initial steps towards tackling a tough problem in human genetics. But, there are four issues for readers to bear in mind in evaluating the results.

First, we hope that the authors make their program freely available. This is the standard in the field. Many of us are interested in evaluating the capacities of their program. To our knowledge, it is not now available, although it has been used in multiple published papers. We could find no link in the paper or on the senior author’s lab page.

Second, readers need to remember that this was an in-silico analysis. It produces hypotheses but does not (and cannot) provide proof. The methods are subject to multiple biases, and it was not clear how well these were controlled (see point 4 as well). We wondered whether known biases like gene size and LD patterns were well controlled.

Third, we would have liked to see greater scholarship. There is an unfortunate trend for computational biologists to produce tools without benchmarking them against existing tools or rigorously determining power and error rates. The lack of finding significant clusters in control sets is insufficient in showing the validity of their program. Are the authors’ claims that their new tool represents superiority truly justified?

Moreover, there are a lot of tools for performing analyses of these sorts (e.g., INRICH, FORGE, MAGENTA, Ingenuity, ALIGATOR, among many others). Indeed, these sorts of analyses are in the toolkits of most psychiatric genetics groups and are routinely applied. Given that there are many papers reporting results, a scholarly treatment of how their results compare to those of others and what the added value of their program is would have been useful.

Fourth, and most importantly, pathway analysis is completely dependent on the input—the genetic findings and the pathways. The findings that the authors used had issues. The CNV list is likely to change soon as the PGC CNV group completes its integrated analyses of tens of thousands of subjects. The exome list was based on a small and atypical sample, and much larger studies are in preparation (see SRF comment). The authors did not seem to confront the issue that all humans contain a lot of deleterious exonic variation. And (spoiler alert), the GWAS list is soon to increase markedly. More and more precise findings are sure to alter the results.

The pathways used were pretty standard—GO, KEGG, protein-protein interaction databases. Unfortunately, although widely used, these pathways have multiple issues. The content of many GO annotations and KEGG pathways have not been constructed by experts in the area. As one salient example, synaptic gene lists in standard pathway databases were quite imperfectly related to lists created by experts (Ruano et al., 2010). The authors also relied somewhat uncritically on the PPI databases. These have multiple issues, and some (unpublished) data suggest substantial error (i.e., large fractions of the predicted interactions are not, in fact, real or biologically meaningful). The fraction of the proteome screened adequately by these methods is small. Some interactions in these databases are non-specific, or occur between molecules that are never in the same place at the same time.

Indeed, the genes overrepresented in PPI databases were selected due to disease relevance or biological importance (e.g., there is a lot of work on P53). In general, the more a gene is investigated, the more interactions are found.

Still, this is a key paper, albeit a snapshot based on imperfect input data, and we look forward to seeing whether additional analyses confirm a role in schizophrenia of the networks identified currently with their program.

References:

Kirov G, Pocklington AJ, Holmans P, Ivanov D, Ikeda M, Ruderfer D, Moran J, Chambert K, Toncheva D, Georgieva L, Grozeva D, Fjodorova M, Wollerton R, Rees E, Nikolov I, van de Lagemaat LN, Bayés A, Fernandez E, Olason PI, Böttcher Y, Komiyama NH, Collins MO, Choudhary J, Stefansson K, Stefansson H, Grant SG, Purcell S, Sklar P, O'Donovan MC, Owen MJ. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol Psychiatry. 2012 Feb; 17(2):142-53. Abstract

Xu B, Ionita-Laza I, Roos JL, Boone B, Woodrick S, Sun Y, Levy S, Gogos JA, Karayiorgou M. De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia. Nat Genet. 2012 Oct 3. Abstract

Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, Lin DY, Duan J, Ophoff RA, Andreassen OA, Scolnick E, Cichon S, St Clair D, Corvin A, Gurling H, Werge T, Rujescu D, Blackwood DH, Pato CN, Malhotra AK, Purcell S, Dudbridge F, Neale BM, Rossin L, Visscher PM, Posthuma D, Ruderfer DM, Fanous A, Stefansson H, Steinberg S, Mowry BJ, Golimbet V, de Hert M, Jönsson EG, Bitter I, Pietiläinen OP, Collier DA, Tosato S, Agartz I, Albus M, Alexander M, Amdur RL, Amin F, Bass N, Bergen SE, Black DW, Břrglum AD, Brown MA, Bruggeman R, Buccola NG, Byerley WF, Cahn W, Cantor RM, Carr VJ, Catts SV, Choudhury K, Cloninger CR, Cormican P, Craddock N, Danoy PA, Datta S, de Haan L, Demontis D, Dikeos D, Djurovic S, Donnelly P, Donohoe G, Duong L, Dwyer S, Fink-Jensen A, Freedman R, Freimer NB, Friedl M, Georgieva L, Giegling I, Gill M, Glenthřj B, Godard S, Hamshere M, Hansen M, Hansen T, Hartmann AM, Henskens FA, Hougaard DM, Hultman CM, Ingason A, Jablensky AV, Jakobsen KD, Jay M, Jürgens G, Kahn RS, Keller MC, Kenis G, Kenny E, Kim Y, Kirov GK, Konnerth H, Konte B, Krabbendam L, Krasucki R, Lasseter VK, Laurent C, Lawrence J, Lencz T, Lerer FB, Liang KY, Lichtenstein P, Lieberman JA, Linszen DH, Lönnqvist J, Loughland CM, Maclean AW, Maher BS, Maier W, Mallet J, Malloy P, Mattheisen M, Mattingsdal M, McGhee KA, McGrath JJ, McIntosh A, McLean DE, McQuillin A, Melle I, Michie PT, Milanova V, Morris DW, Mors O, Mortensen PB, Moskvina V, Muglia P, Myin-Germeys I, Nertney DA, Nestadt G, Nielsen J, Nikolov I, Nordentoft M, Norton N, Nöthen MM, O'Dushlaine CT, Olincy A, Olsen L, O'Neill FA, Orntoft TF, Owen MJ, Pantelis C, Papadimitriou G, Pato MT, Peltonen L, Petursson H, Pickard B, Pimm J, Pulver AE, Puri V, Quested D, Quinn EM, Rasmussen HB, Réthelyi JM, Ribble R, Rietschel M, Riley BP, Ruggeri M, Schall U, Schulze TG, Schwab SG, Scott RJ, Shi J, Sigurdsson E, Silverman JM, Spencer CC, Stefansson K, Strange A, Strengman E, Stroup TS, Suvisaari J, Terenius L, Thirumalai S, Thygesen JH, Timm S, Toncheva D, van den Oord E, van Os J, van Winkel R, Veldink J, Walsh D, Wang AG, Wiersma D, Wildenauer DB, Williams HJ, Williams NM, Wormley B, Zammit S, Sullivan PF, O'Donovan MC, Daly MJ, Gejman PV. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011 Oct ; 43(10):969-76. Abstract

Ruano D, Abecasis GR, Glaser B, Lips ES, Cornelisse LN, de Jong AP, Evans DM, Davey Smith G, Timpson NJ, Smit AB, Heutink P, Verhage M, Posthuma D. Functional gene group analysis reveals a role of synaptic heterotrimeric G proteins in cognitive ability. Am J Hum Genet. 2010 Feb 12;86(2):113-25. Abstract

View all comments by Patrick Sullivan
View all comments by Danielle Posthuma