Schizophrenia Research Forum - A Catalyst for Creative Thinking

Zhang XY, Liu L, Liu S, Hong X, Chen da C, Xiu MH, Yang FD, Zhang Z, Zhang X, Kosten TA, Kosten TR. Short-term tropisetron treatment and cognitive and P50 auditory gating deficits in schizophrenia. Am J Psychiatry. 2012 Sep ; 169(9):974-81. Pubmed Abstract

Comments on News and Primary Papers
Comment by:  Britta Hahn
Submitted 7 October 2012
Posted 7 October 2012

The study by Zhang et al. (2012) provides further evidence for the therapeutic potential of partial α7 nicotinic acetylcholine receptor (nAChR) agonists in the treatment of the cognitive deficits associated with schizophrenia. Given the impact of this symptom group on psychosocial functioning (Green et al., 2004; Tan, 2009) and the current absence of effective treatments, the importance of such findings is easily seen. Tropisetron administered over 10 days improved immediate and delayed memory subscales of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and improved P50 auditory gating deficits in 40 non-smoking inpatients with schizophrenia.

The evidence for enhanced auditory gating was strong, with the reduction in the S2/S1 ratio being entirely due to a decrease in S2 amplitude with no change in S1. By limiting the study sample to patients who displayed P50 gating deficits at baseline (~40 percent of all screened patients), the authors may have selected a subpopulation of patients particularly prone to showing benefits from α7 nAChR agonist treatment, possibly due to a larger incidence of genetic mutations reducing α7 nAChR subunit expression (Leonard et al., 2002) in this subsample. This type of pre-screening may indeed be a clinical approach to be considered prior to α7 agonist treatment. However, the measurement reliability of the P50 S2/S1 ratio tends to be low, and the degree to which P50 gating deficits predict treatment success with α7 agonists remains to be determined. Despite the large role that this ERP has played as an endophenotype of schizophrenia guiding drug development, evidence that P50 gating deficits are related to higher cognitive functions is still sparse (Potter et al., 2006). Zhang et al. found that changes in P50 gating from baseline to day 10 were correlated with changes in RBANS scores, collapsing data across all four treatment groups (including placebo). However, such correlations may be based on day-to-day fluctuations in cognitive state that could affect both measures in the same manner. More evidence is needed to clarify the clinical significance of improvements in P50 gating.

The finding that effects of tropisetron were seen mostly on memory indices differs from studies with the partial α7 agonist DMXB-A (Olincy et al., 2006; Freedman et al., 2008) and a previous study with tropisetron (Shiina et al., 2010), which reported effects predominantly on attention/vigilance indices. Larger trials may be able to determine more conclusively the cognitive domains beneficially affected by α7 agonists. Relatively flat dose-response curves were observed with tropisetron, consistent with a partial agonist mode of action. The finding that the largest dose (20 mg) produced no added benefits but tended to be associated with more side effects argues for the choice of lower doses.

Caution is warranted to not let positive findings with α7 agonists convey the impression that non-α7 nAChR subtypes are irrelevant for the treatment of cognitive deficits in schizophrenia. Indeed, non-α7 subtypes such as α4β2 mediate beneficial effects of nAChR agonists on cognitive performance (e.g., Dunbar et al., 2007; Grottick et al., 2003; Hahn et al., 2003; Levin, 2002), including improvements in sensory gating (Radek et al., 2006). The advantage of targeting α7 over other nAChR subtypes remains to be established by direct comparison. There is also a need for direct comparisons of α7-selective agonists with broader acting nAChR agonists to determine whether this subtype captures all cognitive benefit to be harvested from nAChR modulation in the treatment of schizophrenia.


Dunbar G, Boeijinga PH, Demazières A, Cisterni C, Kuchibhatla R, Wesnes K, Luthringer R (2007) Effects of TC-1734 (AZD3480), a selective neuronal nicotinic receptor agonist, on cognitive performance and the EEG of young healthy male volunteers. Psychopharmacology 191: 919-29. Abstract

Freedman R, Olincy A, Buchanan RW, Harris JG, Gold JM, Johnson L, Allensworth D, Guzman-Bonilla A, Clement B, Ball MP, Kutnick J, Pender V, Martin LF, Stevens KE, Wagner BD, Zerbe GO, Soti F, Kem WR. (2008) Initial phase 2 trial of a nicotinic agonist in schizophrenia. Am J Psychiatry 165: 1040-7. Abstract

Green MF, Kern RS, Heaton RK (2004) Longitudinal studies of cognition and functional outcome in schizophrenia: implications for MATRICS. Schizophr Res 72: 41-51. Abstract

Grottick AJ, Haman M, Wyler R, Higgins GA (2003) Reversal of a vigilance decrement in the aged rat by subtype-selective nicotinic ligands. Neuropsychopharmacology 28: 880-7. Abstract

Hahn B, Sharples CG, Wonnacott S, Shoaib M, Stolerman IP (2003) Attentional effects of nicotinic agonists in rats. Neuropharmacology 44: 1054-67. Abstract

Leonard S, Gault J, Hopkins J, Logel J, Vianzon R, Short M, Drebing C, Berger R, Venn D, Sirota P, Zerbe G, Olincy A, Ross RG, Adler LE, Freedman R (2002) Association of promoter variants in the alpha7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch Gen Psychiatry 59: 1085-96. Abstract

Levin ED (2002) Nicotinic receptor subtypes and cognitive function. J Neurobiol 53: 633-640. Abstract

Olincy A, Harris JG, Johnson LL, Pender V, Kongs S, Allensworth D, Ellis J, Zerbe GO, Leonard S, Stevens KE, Stevens JO, Martin L, Adler LE, Soti F, Kem WR, Freedman R. (2006) Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry 63: 630-8. Abstract

Potter D, Summerfelt A, Gold J, Buchanan RW (2006) Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia. Schiz Bull 32: 692-700. Abstract

Radek RJ, Miner HM, Bratcher NA, Decker MW, Gopalakrishnan M, Bitner RS (2006) Alpha4beta2 nicotinic receptor stimulation contributes to the effects of nicotine in the DBA/2 mouse model of sensory gating. Psychopharmacology 187: 47-55. Abstract

Shiina A, Shirayama Y, Niitsu T, Hashimoto T, Yoshida T, Hasegawa T, Haraguchi T, Kanahara N, Shiraishi T, Fujisaki M, Fukami G, Nakazato M, Iyo M, Hashimoto K (2010) A randomised, double-blind, placebo-controlled trial of tropisetron in patients with schizophrenia. Ann Gen Psychiatry 9: 27. Abstract

Tan BL (2009) Profile of cognitive problems in schizophrenia and implications for vocational functioning. Aust Occup Ther J 56: 220-228. Abstract

View all comments by Britta HahnComment by:  Georg Winterer (Disclosure)
Submitted 30 October 2012
Posted 30 October 2012

The paper of Zhang et al. once more presents promising findings suggesting that nicotinic α7 (partial) agonists may eventually be used as cognition enhancers in schizophrenia. Since several completed studies about the effect of nicotinic agonists on P50 gating and cognitive parameters are now around, we should try to figure out what distinguishes the negative and positive studies.

In the particular case of tropisetron, it certainly needs to be acknowledged that this drug also is a serotonin 5-HT3 antagonist. Previous studies (e.g., Adler et al., 2005) have already suggested that drugs that act as antagonists at this receptor improve P50 gating. Since antagonism of 5-HT3 increases release of acetylcholine, this may add to the direct partial agonist effect of tropisetron at the (low affinity) α7 nicotinic receptor as well as other nicotinic receptors, including high-affinity α4β2 receptors. In this regard, we should also acknowledge that agonists that act at other nicotinic receptors (α4β2) are now under investigation and show promising results when it comes to cognition enhancement in schizophrenia (e.g., varenicline).

Varenicline is primarily a partial agonist of the α4β2 subtype (although agonism at α7 has also been reported). Notably, other than tropisetron, varenicline is an agonist of 5-HT3 receptors. This is puzzling, adding to the confusion about the true cognition-enhancing effect in cholinergic drugs. It might be (exclusively) α7, but it is too early to jump to this conclusion. For instance, we recently published a negative proof-of-mechanism study on allosteric α7 nicotinic receptor modulation and P50 sensory gating in schizophrenia (Winterer et al., 2013).

In my opinion, what we need now is to go back to healthy probands (Phase 1) and select a range of drugs with different receptor profiles, but which have in common that they all act directly or indirectly at nicotinic receptors. These drugs then should be systematically tested for their effects on electrophysiological surrogate measures, including P50 gating, as well as cognitive measures, followed by corresponding investigations (using a preselected subset of compounds) in schizophrenia patients. Of course, this would require collaboration between R&D of different pharmaceutical companies—in other words: an industrial network approach is the unmet need!


Adler LE, Cawthra EM, Donovan KA, Harris JG, Nagamoto HT, Olincy A, Waldo MC. Improved p50 auditory gating with ondansetron in medicated schizophrenia patients. Am J Psychiatry . 2005 Feb ; 162(2):386-8. Abstract

Winterer G, Gallinat J, Brinkmeyer J, Musso F, Kornhuber J, Thuerauf N, Rujescu D, Favis R, Sun Y, Franc MA, Ouwerkerk-Mahadevan S, Janssens L, Timmers M, Streffer JR. Allosteric alpha-7 nicotinic receptor modulation and P50 sensory gating in schizophrenia: A proof-of-mechanism study. Neuropharmacology . 2013 Jan ; 64(1):197-204. Abstract

View all comments by Georg Winterer