Schizophrenia Research Forum - A Catalyst for Creative Thinking
Home Profile Membership/Get Newsletter Log In Contact Us
 For Patients & Families
What's New
Recent Updates
SRF Papers
Current Papers
Search All Papers
Search Comments
News
Research News
Conference News
Plain English
Forums
Current Hypotheses
Idea Lab
Online Discussions
Virtual Conferences
Interviews
Resources
What We Know
SchizophreniaGene
Animal Models
Drugs in Trials
Research Tools
Grants
Jobs
Conferences
Journals
Community Calendar
General Information
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
History
SRF Team
Advisory Board
Support Us
How to Cite
Fan (E)Mail
The Schizophrenia Research Forum web site is sponsored by the Brain and Behavior Research Foundation and was created with funding from the U.S. National Institute of Mental Health.
Annotation

Cunningham MO, Hunt J, Middleton S, LeBeau FE, Gillies MJ, Gillies MG, Davies CH, Maycox PR, Whittington MA, Racca C. Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness. J Neurosci . 2006 Mar 8 ; 26(10):2767-76. PubMed Abstract

Comments on Paper and Primary News
Primary News: Gamma Band Plays a Sour Note in Entorhinal Cortex of Schizophrenia Models

Comment by:  Bita Moghaddam, SRF Advisor
Submitted 3 April 2006 Posted 3 April 2006

Cortical dysfunction in schizophrenia has been attributed to both inhibitory GABA and excitatory glutamate neurotransmission. Abnormalities in cortical GABA neurons have been observed primarily in the subset of GABA interneurons that contain the calcium-binding protein parvalbumin (PV). The glutamatergic dysfunction is suspected primarily because reducing glutamate neurotransmission at the NMDA receptors produces behavioral deficits that resemble symptoms of schizophrenia. These two mechanisms have been generally treated as separate conjectures when conceptualizing theories of schizophrenia. The paper by Cunningham et al. demonstrates that, in fact, disruptions in PV positive cortical GABA neurons and blockade of NMDA receptors produce similar disruptions to the function of cortical networks.

The authors used lysophosphatidic acid 1 receptor (LPA-1)-deficient mice which, they argue, are a relevant model of schizophrenia because these animals display sensorimotor gating deficits, a critical feature of schizophrenia. They demonstrate that, similar to schizophrenia, the...  Read more


View all comments by Bita Moghaddam

Primary News: Gamma Band Plays a Sour Note in Entorhinal Cortex of Schizophrenia Models

Comment by:  Patricio O'Donnell, SRF Advisor
Submitted 7 April 2006 Posted 7 April 2006

Animal models of schizophrenia and other psychiatric disorders are receiving increasing interest, as they provide useful tools to test possible pathophysiological scenarios. Some models have been tested with a wide array of approaches and many others continue to develop. If one focuses on possible cortical alterations, a critical issue emerging from many different lines of research using several different models is the apparent contradiction between the hypo-NMDA concept and the data suggesting a loss of cortical interneurons. Is there a hypo- or a hyperactive cortex?

This conundrum has been present since earlier days in the postmortem and clinical research literature, but with the advent of more refined animal models, it may be time to provide a possible way in which these discrepant sets of data can be reconciled. Whether this was the authors’ intention or not, the article by Cunningham and colleagues is an excellent step in that direction. This study used mice deficient in lysophosphatidic acid 1 receptor, a manipulation that reduced the GABA and parvalbumin-containing...  Read more


View all comments by Patricio O'Donnell
Submit a Comment on this Paper
Make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Affiliation  
Country or Territory  
*Login Email Address  
*Confirm Email Address  
*Password  
*Confirm Password  
Remember my Login and Password?  
Get SRF newsletter with recent commentary?  
 
Enter the code as it is shown below:
This code helps prevent automated registrations.

I recommend this paper

Please note: A member needs to be both registered and logged in to submit a comment.

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


 
 
SRF News
SRF Comments
Text Size
Reset Text Size
Email this pageEmail this page

Share/Bookmark
 
Copyright © 2005- 2014 Schizophrenia Research Forum Privacy Policy Disclaimer Disclosure Copyright