Schizophrenia Research Forum - A Catalyst for Creative Thinking
Home Profile Membership/Get Newsletter Log In Contact Us
 For Patients & Families
What's New
Recent Updates
SRF Papers
Current Papers
Search All Papers
Search Comments
News
Research News
Conference News
Plain English
Forums
Current Hypotheses
Idea Lab
Online Discussions
Virtual Conferences
Interviews
Resources
What We Know
SchizophreniaGene
Animal Models
Drugs in Trials
Research Tools
Grants
Jobs
Conferences
Journals
Community Calendar
General Information
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
History
SRF Team
Advisory Board
Support Us
How to Cite
Fan (E)Mail
The Schizophrenia Research Forum web site is sponsored by the Brain and Behavior Research Foundation and was created with funding from the U.S. National Institute of Mental Health.
Annotation

Norton N, Moskvina V, Morris DW, Bray NJ, Zammit S, Williams NM, Williams HJ, Preece AC, Dwyer S, Wilkinson JC, Spurlock G, Kirov G, Buckland P, Waddington JL, Gill M, Corvin AP, Owen MJ, O'Donovan MC. Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. Am J Med Genet B Neuropsychiatr Genet . 2006 Jan 5 ; 141(1):96-101. PubMed Abstract

Comments on Paper and Primary News
Primary News: Neuregulin Partner ErbB4 Spices Up Genetic Associations

Comment by:  Amanda Jayne Law, SRF Advisor
Submitted 22 February 2006 Posted 22 February 2006
  I recommend this paper

The study of Ghashghaei and colleagues provides a remarkable insight into the function of neuregulin 1 (NRG1), and NRG2 in adult neurogenesis. The study demonstrates that NRG1(2)/ErbB4 signaling influences the proliferation, differentiation, organization, and migration of adult neural progenitor cells in the subventricular zone (SVZ) and rostral migratory stream (RMS), in a ligand- and cell-dependent fashion. Using immunohistochemistry, Ghashghaei and colleagues first demonstrate that NRG1, NRG2, and ErbB4 are expressed by distinct cell types in the SVZ and RMS, notably ErbB4 and NRG1 by polysialylated neural cell adhesion molecule positive (PSA-NCAM+) neuroblasts, and ErbB2/3/4 by a subset of GFAP+ cells. These observations extend the group's previous studies of NRG1 and ErbB4 in the RMS (Anton et al., 2004). In their current study, Ghashghaei went on to examine the effects of exogenous infusion of NRG1 and NRG2 on neurogenesis in the RMS of adult mice. Interestingly, NRG1 was shown to decrease the...  Read more


View all comments by Amanda Jayne Law
Submit a Comment on this Paper
Make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Affiliation  
Country or Territory  
*Login Email Address  
*Confirm Email Address  
*Password  
*Confirm Password  
Remember my Login and Password?  
Get SRF newsletter with recent commentary?  
 
Enter the code as it is shown below:
This code helps prevent automated registrations.

I recommend this paper

Please note: A member needs to be both registered and logged in to submit a comment.

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


 
 
SRF News
SRF Comments
Text Size
Reset Text Size
Email this pageEmail this page

Share/Bookmark
 
Copyright © 2005- 2014 Schizophrenia Research Forum Privacy Policy Disclaimer Disclosure Copyright