Schizophrenia Research Forum - A Catalyst for Creative Thinking
Home Profile Membership/Get Newsletter Log In Contact Us
 For Patients & Families
What's New
Recent Updates
SRF Papers
Current Papers
Search All Papers
Search Comments
News
Research News
Conference News
Plain English
Forums
Current Hypotheses
Idea Lab
Online Discussions
Virtual Conferences
Interviews
Resources
What We Know
SchizophreniaGene
Animal Models
Drugs in Trials
Research Tools
Grants
Jobs
Conferences
Journals
Community Calendar
General Information
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
History
SRF Team
Advisory Board
Support Us
How to Cite
Fan (E)Mail
The Schizophrenia Research Forum web site is sponsored by the Brain and Behavior Research Foundation and was created with funding from the U.S. National Institute of Mental Health.
Annotation

Volk DW, Pierri JN, Fritschy JM, Auh S, Sampson AR, Lewis DA. Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia. Cereb Cortex . 2002 Oct ; 12(10):1063-70. PubMed Abstract

Comments on Paper and Primary News
Comment by:  David Lewis, SRF Advisor
Submitted 27 October 2005 Posted 27 October 2005

The authors demonstrated that the presynaptic reduction of the GABA transporter in chandelier axon terminals was associated with an upregulation of postsynaptic α2-containing GABAA receptors in the axon initial segments of pyramidal neurons in subjects with schizophrenia.

View all comments by David Lewis
Comments on Related News
Related News: ErbB4 Deletion Models Aspects of Schizophrenia

Comment by:  Beatriz RicoOscar Marin
Submitted 30 October 2013 Posted 5 November 2013

We would like to provide an answer to the question raised by Andrés Buonanno: “If the knockouts have more γ power, why do they perform less well on the Y maze?” As explained in the manuscript, the abnormal increase in γ power observed in conditional ErbB4 mutants would not necessarily lead to better performance, because interneurons are not pacing pyramidal cells at the proper/normal rhythm. In addition, local hypersynchrony seems to affect long-range functional connectivity: We showed a prominent decoupling between the hippocampus and prefrontal cortex. The increase in excitability and synchrony, and the decoupling between the hippocampus and prefrontal cortex, are likely the cause of the behavioral deficits in cognitive function.

In line with this, we respectfully disagree with Buonanno's next comment that “these data are also at odds with what has been observed in schizophrenia.” Indeed, as we mentioned in the manuscript, recent studies indicate that medication-naive, first-episode, and chronic patients with schizophrenia show elevated γ-band power in...  Read more


View all comments by Beatriz Rico
View all comments by Oscar Marin
Submit a Comment on this Paper
Make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Affiliation  
Country or Territory  
*Login Email Address  
*Confirm Email Address  
*Password  
*Confirm Password  
Remember my Login and Password?  
Get SRF newsletter with recent commentary?  
 
Enter the code as it is shown below:
This code helps prevent automated registrations.

I recommend this paper

Please note: A member needs to be both registered and logged in to submit a comment.

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


 
 
SRF News
SRF Comments
Text Size
Reset Text Size
Email this pageEmail this page

Share/Bookmark
 
Copyright © 2005- 2014 Schizophrenia Research Forum Privacy Policy Disclaimer Disclosure Copyright