Schizophrenia Research Forum - A Catalyst for Creative Thinking
Home Profile Membership/Get Newsletter Log In Contact Us
 For Patients & Families
What's New
Recent Updates
SRF Papers
Current Papers
Search All Papers
Search Comments
Research News
Conference News
Plain English
Current Hypotheses
Idea Lab
Online Discussions
Virtual Conferences
What We Know
Animal Models
Drugs in Trials
Research Tools
Community Calendar
General Information
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
SRF Team
Advisory Board
Support Us
How to Cite
Fan (E)Mail
The Schizophrenia Research Forum web site is sponsored by the Brain and Behavior Research Foundation and was created with funding from the U.S. National Institute of Mental Health.

Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M, Yizhar O, Cho SL, Gong S, Ramakrishnan C, Stuber GD, Tye KM, Janak PH, Deisseroth K. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron . 2011 Dec 8 ; 72(5):721-33. PubMed Abstract

Comments on Paper and Primary News
Primary News: Optogenetics Comes to the Rat Brain

Comment by:  Bryan Roth, SRF Advisor
Submitted 16 December 2011 Posted 21 December 2011
  I recommend this paper

This will be a valuable resource for those who use rats for neuropsychopharmacological research. Until now, the use of Cre-recombinase lines for expressing either optogenetic (Boyden et al., 2005) and pharmacogenetic (Armbruster et al., 2007) tools for modulating neuronal activity and signaling was limited to mice. Rats, of course, are superior to mice for many behavioral studies relevant to the pathogenesis and treatment of schizophrenia.

Now, Witten et al. (from the Deisseroth lab) provide rats which will allow for the Cre-mediated expression of a variety of genes. For this study, they utilized adeno-associated viral constructs, which allow for Cre-mediated expression of opsins (AAV-DIO; Tsai et al., 2009), although these rats should be useful for expression of nearly any protein.


Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci . 2005 Sep 1 ; 8(9):1263-8. Abstract

Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A . 2007 Mar 20 ; 104(12):5163-8. Abstract

Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science . 2009 May 22 ; 324(5930):1080-4. Abstract

View all comments by Bryan Roth

Submit a Comment on this Paper
Make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Country or Territory  
*Login Email Address  
*Confirm Email Address  
*Confirm Password  
Remember my Login and Password?  
Get SRF newsletter with recent commentary?  
Enter the code as it is shown below:
This code helps prevent automated registrations.

I recommend this paper

Please note: A member needs to be both registered and logged in to submit a comment.


(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)


SRF News
SRF Comments
Text Size
Reset Text Size
Email this pageEmail this page

Copyright © 2005- 2014 Schizophrenia Research Forum Privacy Policy Disclaimer Disclosure Copyright