Schizophrenia Research Forum - A Catalyst for Creative Thinking
Home Profile Membership/Get Newsletter Log In Contact Us
 For Patients & Families
What's New
Recent Updates
SRF Papers
Current Papers
Search All Papers
Search Comments
News
Research News
Conference News
Plain English
Forums
Current Hypotheses
Idea Lab
Online Discussions
Virtual Conferences
Interviews
Resources
What We Know
SchizophreniaGene
Animal Models
Drugs in Trials
Research Tools
Grants
Jobs
Conferences
Journals
Community Calendar
General Information
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
History
SRF Team
Advisory Board
Support Us
How to Cite
Fan (E)Mail
The Schizophrenia Research Forum web site is sponsored by the Brain and Behavior Research Foundation and was created with funding from the U.S. National Institute of Mental Health.
Annotation

Huffaker SJ, Chen J, Nicodemus KK, Sambataro F, Yang F, Mattay V, Lipska BK, Hyde TM, Song J, Rujescu D, Giegling I, Mayilyan K, Proust MJ, Soghoyan A, Caforio G, Callicott JH, Bertolino A, Meyer-Lindenberg A, Chang J, Ji Y, Egan MF, Goldberg TE, Kleinman JE, Lu B, Weinberger DR. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat Med . 2009 May ; 15(5):509-18. PubMed Abstract

Comments on Paper and Primary News
Primary News: Special K: Primate-specific Potassium Channel Variant Implicated in Schizophrenia

Comment by:  Paul Shepard
Submitted 18 May 2009 Posted 19 May 2009
  I recommend this paper

The manuscript by Huffaker et al. extends the growing number of cardiac potassium channels that have found their way into the brain and onto the list of putative therapeutic targets for the treatment of neurological and psychiatric disease. In an extensive series of experiments, these investigators demonstrate an association between single nucleotide polymorphisms in a gene encoding an inwardly rectifying potassium channel (KCNH2), the expression of a previously unknown isoform (KCNH2-3.1), and schizophrenia. Named for the dance exhibited by ether-intoxicated fruit fly mutants in which the gene family was first identified, ether-a-go-go related gene or ERG K+ channels contribute to the repolarization of cardiac action potentials and the propensity of antipsychotic drugs to prolong the QT interval, a direct result of their ability to attenuate this current in the heart. The unique gating properties of ERG K+ channels (for review, see Shepard et al., 2007) give rise to a strong resurgent current that can profoundly alter both...  Read more


View all comments by Paul Shepard

Primary News: Special K: Primate-specific Potassium Channel Variant Implicated in Schizophrenia

Comment by:  Szatmar Horvath
Submitted 11 May 2009 Posted 1 June 2009
  I recommend this paper
Submit a Comment on this Paper
Make a comment on this paper. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Affiliation  
Country or Territory  
*Login Email Address  
*Confirm Email Address  
*Password  
*Confirm Password  
Remember my Login and Password?  
Get SRF newsletter with recent commentary?  
 
Enter the code as it is shown below:
This code helps prevent automated registrations.

I recommend this paper

Please note: A member needs to be both registered and logged in to submit a comment.

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


 
 
SRF News
SRF Comments
Text Size
Reset Text Size
Email this pageEmail this page

Share/Bookmark
 
Copyright © 2005- 2014 Schizophrenia Research Forum Privacy Policy Disclaimer Disclosure Copyright