Schizophrenia Research Forum - A Catalyst for Creative Thinking

Schizophrenia and MS: Shared Genetic Risk Suggests Immune Involvement

February 15, 2014. There is genetic overlap between schizophrenia and multiple sclerosis (MS) that appears to be driven by immune system-related genes, according to a new study that mined genomewide association data from the Psychiatric Genomics Consortium (PGC). Published online January 28 in Molecular Psychiatry, the study was led by Ole Andreassen, University of Oslo, Norway, and Anders Dale, University of California, San Diego. The researchers leveraged the increased statistical power obtained by combining samples from the two diseases, allowing them to identify substantially more loci associated with schizophrenia than could be identified using the data from schizophrenia alone.

Schizophrenia shares many risk variants with other disorders, especially bipolar disorder (see SRF related conference report; SRF related news report). The existence of this overlapping risk, whereby one gene or variant contributes to more than one phenotype, is known as pleiotropy. Andreassen, Dale, and colleagues recently used a novel Conditional False Discovery Rate approach to improve the detection of variants associated with both schizophrenia and bipolar disorder (Andreassen et al., 2013).

Increasing evidence points to a role for immune system molecules in the neurobiology of schizophrenia (see SRF related conference report). Epidemiological studies have suggested that maternal infection during pregnancy, thought to stimulate an inflammatory response in the fetus, elevates risk for the illness. Supporting this idea, several single nucleotide polymorphisms (SNPs) in the major histocompatibility complex (MHC) of chromosome 6, a region containing over 200 genes involved in the immune system, have been tied to an elevated risk for schizophrenia (see SRF related news report). Genes in this region are some of the best replicated genomewide association study (GWAS) findings to date (see SRF related news report). In the current analysis, Andreassen, Dale, and colleagues used the Conditional False Discovery Rate approach to examine the pleiotropy between schizophrenia and MS, a disease strongly linked to the immune system.

The pleiotropic advantage
In traditional GWAS analysis, individual SNPs below a p value of 10-8 are considered significant. However, in a polygenic disorder such as schizophrenia, many disease-related SNPs will be impossible to identify using standard statistical tools and current sample sizes. The approach used in this study is based on the idea that pleiotropic SNPs (those that contribute to more than one illness) will be easier to identify because of the greater power afforded by combining two samples. In the current study, the researchers used summary statistic data from two prior GWAS to identify schizophrenia SNPs conditioned on the effect in MS.

By combining the schizophrenia (n = 21,856) and MS (n = 27,148) GWAS data, the researchers found that the Conditional False Discovery Rate approach was able to identify 21 independent loci associated with schizophrenia, only 10 of which have been previously identified by using standard GWAS analysis approaches. One locus was within the MHC region and encompassed many genes, while the other 20 were single-gene loci at other regions throughout the genome. Within the complex MHC locus, the significant SNPs identified accounted for the majority of the overlap between the two diseases, and removing the MHC-related SNPs diminished the enrichment of schizophrenia conditional on MS.

Interestingly, the directions of effect in these SNPs were opposite: Alleles that increased the risk of multiple sclerosis were associated with a decreased risk of schizophrenia, suggesting that although both diseases are associated with MHC loci, the risk profiles are very different. The authors caution that the low imputation rates of the study make it difficult to determine the exact MHC variants associated with schizophrenia. Further evidence of immune involvement in schizophrenia comes from the finding that many of the non-MHC loci identified are also related to the immune system functioning. However, some of the MHC loci finger genes such as NOTCH4 and TRIM26, which have neurobiological functions, making it difficult to conclude that the overlap between schizophrenia and MS is solely linked to the immune system.

Schizophrenia specificity
Andreassen and colleagues did not find an association between MS and bipolar disorder (n = 16,731), consistent with the earlier finding that the genetic overlap between schizophrenia and bipolar disorder does not involve the MHC region. Removing the MHC loci from the analysis did not affect the enrichment of bipolar disorder conditioned on MS, or on the previously reported enrichment of schizophrenia conditioned on bipolar disorder, suggesting that MHC involvement among psychotic disorders is specific to schizophrenia and may be a way to differentiate between schizophrenia and bipolar disorder. MHC involvement also does not seem to play a role in other psychiatric illnesses, as the researchers found no genetic enrichment in major depressive disorder, autism spectrum disorder, and attention deficit/hyperactivity disorder conditioned on MS.

Apart from the implications for schizophrenia, the findings of the current study have broad methodological implications, conclude the authors. “Our findings also indicate that leveraging existing genomewide association studies for pleiotropic genes may represent an important avenue by which currently available resources can be optimized to identify more of the missing heritability of complex phenotypes.”—Allison A. Curley.

Reference:
O A Andreassen, H F Harbo, Y Wang, W K Thompson, A J Schork, M Mattingsdal, V Zuber, F Bettella, S Ripke, J R Kelsoe, K S Kendler, M C O'Donovan, P Sklar, The Psychiatric Genomics Consortium (PGC) Bipolar Disorder and Schizophrenia Work Groups, The International Multiple Sclerosis Genetics Consortium (IMSGC), L K McEvoy, R S Desikan, B A Lie, S Djurovic, and A M Dale. Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune-related gene loci. Mol Psychiatry. 2014 Jan 28. Abstract

Comments on Related News


Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Todd LenczAnil Malhotra (SRF Advisor)
Submitted 3 July 2009
Posted 3 July 2009

The three companion papers published in Nature provide important new evidence for a role of the MHC complex and common variation across the genome in risk for schizophrenia. These studies have exploited the availability of comprehensive genotyping technologies, coupled with large cohorts of cases and controls, to identify candidate loci for disease susceptibility.

A notable feature of these papers is the clear willingness of each of the groups to share its data, and to provide overlapping presentations of each others’ results. The combination of datasets permitted the statistical significance of the MHC findings to emerge, thereby increasing confidence in results. The implication that immune processes may interact with genetic risk to influence schizophrenia risk is consistent with several lines of evidence, including our own small GWAS study (Lencz et al., 2007) implicating cytokine receptors in schizophrenia susceptibility.

Perhaps most intriguing is the finding from the International Schizophrenia Consortium demonstrating that a “score” test—combining information from many thousands of common variants—can reliably differentiate patients and controls across multiple psychiatric cohorts. These results indicate that hundreds, if not thousands, of genes of small effect may contribute to schizophrenia risk. Moreover, these same genes were shown to contribute to bipolar risk (but not risk for non-psychiatric disorders such as diabetes).

Much more work remains to be done in psychiatric genetics. While the score test accounted for about 3 percent of the observed case-control variance, statistical modeling suggested that common variation could explain as much as one-third or more of the total risk. Nevertheless, there remains a substantial proportion of genetic “dark matter” (unexplained variance), given the high heritability of a disorder such as schizophrenia. Complementary approaches are needed to further parse the source of the common genetic variance, as well as to identify rare yet highly penetrant mutations. Additional techniques, such as pharmacogenetic studies and endophenotypic research, will help to explicate the functionality and clinical significance of observed risk alleles.

View all comments by Todd Lencz
View all comments by Anil Malhotra

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Daniel Weinberger, SRF Advisor
Submitted 3 July 2009
Posted 3 July 2009

The three Nature papers reporting GWAS results in a large sample of cases of schizophrenia and controls from around Western Europe and the U.S. are decidedly disappointing to those expecting this strategy to yield conclusive evidence of common variants predicting risk for schizophrenia. Why has this extensive and very costly effort not produced more impressive results? There are likely to be many explanations for this, involving the usual refrains about clinical and genetic heterogeneity, diagnostic imprecision, and technical limitations in the SNP chips. But the likely, more fundamental problem in psychiatric genetics involves the biologic complexity of the conditions themselves, which renders them especially poorly suited to the standard GWAS strategy. The GWA analytic model assumes fixed, predictable relationships between genetic risk and illness, but simple relationships between genetic risk and complex pathophysiological mechanisms are unlikely. Many biologic functions show non-linear relationships, and depending on the biologic context, more of a potential pathogenic factor, can make things worse or it can make them better. Studies of complex phenotypes in model systems illustrate that individual gene effects depend upon non-linear interactions with other genes (Toma et al., 2002; Shaoa et al, 2008). Similar observations are beginning to emerge in human disorders, e.g., in risk for cancer (Lo et al., 2008) and depression (Pezawas et al., 2008).

The GWA approach also assumes that diagnosis represents a unitary biological entity, but most clinical diagnoses are syndromal and biologically heterogeneous, and this is especially true in psychiatric disorders. Type 2 diabetes is the clinical expression of changes in multiple physiologic processes, including in pancreatic function, in adipose cell function, as well as in eating behavior. Likewise, hypertension results from abnormalities in many biologic processes (e.g., vascular reactivity, kidney function, CNS control of blood pressure, metabolic factors, sodium regulation), and even a large effect on any specific process within a subset of individuals will seem small when measured in large unrelated samples (Newton-Cheh et al., 2009). In the case of the cognitive and emotional problems associated with psychiatric disorders, the biologic pathways to clinical manifestations are probably much more heterogeneous. While the results of GWAS in disorders like type 2 diabetes and hypertension have been more informative than in the schizophrenia results so far, they, too, have been disappointing, considering all the fanfare about their expectations. But given the pathophysiologic realities of diabetes, hypertension, or psychiatric disorders, how could the effect of any common genetic variant acting on only one of the diverse pathophysiological mechanisms implicated in these disorders be anything other than small when measured in large pathophysiologically heterogeneous populations? Other approaches, e.g., family studies, studies of smaller but much better characterized samples, and studies of genetic interactions in these samples, will be necessary to understand the variable genetic architectures of such biologically complex and heterogeneous disorders.

References:

Toma DP, White KP, Hirsch J and Greenspan RJ: Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nature Genetics 2002; 31: 349-353. Abstract

Shaoa H, Burragea LC, Sinasac DS et al : Genetic architecture of complex traits: Large phenotypic effects and pervasive epistasis. PNAS 2008 105: 19910–19914. Abstract

Lo S-W, Chernoff H, Cong L, Ding Y, and Zheng T: Discovering interactions among BRCA1 and other candidate genes associated with sporadic breast cancer. PNAS 2008; 105: 12387–12392. Abstract

Pezawas L, Meyer-Lindenberg A, Goldman AL, et al.: Biologic epistasis between BDNF and SLC6A4 and implications for depression. Mol Psychiatry 2008;13:709-716. Abstract

Newton-Cheh C, Larson MG, Vasan RS: Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Gen 2009; 41: 348-353. Abstract

View all comments by Daniel Weinberger

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Irving Gottesman, SRF Advisor
Submitted 3 July 2009
Posted 3 July 2009
  I recommend the Primary Papers

The synthesis and extraction of the essence of the 3 Nature papers by Heimer and Farley represents science reporting at its best. Completion of the task while the ink was still wet shows that SRF is indeed in good hands. Congratulations on being concise, even-handed, non-judgmental, and challenging under the pressure of time.

View all comments by Irving Gottesman

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Christopher RossRussell L. Margolis
Submitted 6 July 2009
Posted 6 July 2009

Schizophrenia Genetics: Glass Half Full?
While it may be disappointing that the GWAS described above did not identify more genes, they nevertheless represent a landmark in psychiatric genetics and suggest a dual approach for the future: continued large-scale genetic association studies along with alternative genetic approaches leading to the discovery of new genetic etiologies, and more functional investigations to identify pathways of pathogenesis—which may themselves suggest new etiologies.

The consistent identification of an association with the MHC locus reinforces (without proving, as pointed out in the SRF news story) long-standing interest in the involvement of infectious or immune factors in schizophrenia pathogenesis (Yolken and Torrey, 2008). Epidemiologic and neuropathological studies that include patients selected for the presence or absence of immunologic genetic risk variants could potentially clarify etiology; cell and mouse model studies could clarify pathogenesis (Ayhan et al., 2009). It is striking that a major genetic finding in schizophrenia serves to reinforce the concept of environmental risk factors.

The two specific genes identified by the SGENE consortium, NRGN and TCF4, offer intriguing new leads into schizophrenia. This should foster a number of further genetic and neurobiological studies. Deep resequencing (and CNV analysis) can detect rare causative mutations, as exemplified by TCF4 mutations leading to Pitt-Hopkins syndrome. Neurogranin already has clear connections to interesting signaling pathways related to glutamate transmission. A hope is that further studies of both gene products and their interactions will identify pathogenic pathways.

The ISC used common genetic variants “en masse” to generate a “polygene score” from discovery samples of patients; that score was able to predict case status in test populations. The success of this approach provides very strong evidence that a portion of schizophrenia risk status is attributable to common genetic variants acting in concert and that schizophrenia shares genetic factors with bipolar disorder, but not with other diseases. This analysis has multiple practical implications for the direction of research. First, since polygenic factors explain only a portion of the genetic risk, the search for other genetic factors—rare mutations of major effect detectable by deep sequencing, CNVs, variations in tandem repeats (Bruce et al., 2009, in press), and other genomic lesions—takes on new importance. Second, a meaningful integration of polygenic factors in a way that facilitates understanding of schizophrenia pathogenesis and the discovery of therapeutic targets will require identification of relevant pathways. Examination of patient-derived material—such as neurons differentiated from induced pluripotent stem cells taken from well-characterized, patient populations—may be of great value.

The remarkable overlap between the genetic factors of schizophrenia and bipolar disorder suggests the need for further and more inclusive clinical studies—not just of “endophenotypes,” but also of the phenotypes themselves, together, rather than in isolation (Potash and Bienvenu, 2009). For instance, it is only within the past few years that the importance of cognitive dysfunction in schizophrenia has been appreciated. Cognition in bipolar disorder is even less well studied.

How much is really known about the longitudinal course of both disorders? Do genetic factors predict disease outcome? It is only recently that studies have focused intensively on the early course of schizophrenia and its prodrome. Much more is still to be learned, and even less is known about bipolar disorder. In conjunction with this greater understanding of clinical phenotype, it will clearly be necessary to refine the approach to phenotype by establishing the biological framework for these diseases and by establishing biomarkers, such as disruption in white matter (Karlsgodt et al., 2009) or abnormalities in functional networks (Demirci et al., 2009), that cut across current nosological categories. In turn, longitudinal study of clinical, imaging, and functional outcomes of schizophrenia and bipolar disorders should facilitate both focused candidate genetic studies and GWAS of large populations.

References:

Yolken RH, Torrey EF. Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol Psychiatry. 2008 May;13(5):470-9. Abstract

Ayhan Y, Sawa A, Ross CA, Pletnikov MV. Animal models of gene-environment interactions in schizophrenia. Behav Brain Res. 2009 Apr 18. Abstract

Potash JB, Bienvenu OJ. Neuropsychiatric disorders: Shared genetics of bipolar disorder and schizophrenia. Nat Rev Neurol. 2009 Jun;5(6):299-300. Abstract

Karlsgodt KH, Niendam TA, Bearden CE, Cannon TD. White matter integrity and prediction of social and role functioning in subjects at ultra-high risk for psychosis. Biol Psychiatry. 2009 May 6. Epub ahead of print. Abstract

Demirci O, Stevens MC, Andreasen NC, Michael A, Liu J, White T, Pearlson GD, Clark VP, Calhoun VD. Investigation of relationships between fMRI brain networks in the spectral domain using ICA and Granger causality reveals distinct differences between schizophrenia patients and healthy controls. Neuroimage. 2009 Jun;46(2):419-31. Abstract

Bruce HA, Sachs NA, Rudnicki DD, Lin SG, Willour VL, Cowell JK, Conroy J, McQuaid D, Rossi M, Gaile DP, Nowak NJ, Holmes SE, Sklar P, Ross CA, DeLisi LE, Margolis RL. Long tandem repeats as a form of genomic copy number variation: structure and length polymorphism of a chromosome 5p repeat in control and schizophrenia populations. Psychiatric Genetics, in press.

View all comments by Christopher Ross
View all comments by Russell L. Margolis

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  David Collier
Submitted 6 July 2009
Posted 6 July 2009
  I recommend the Primary Papers

This report is unnecessarily negative, from my point of view. The three studies show not only that GWAS can identify susceptibility alleles for schizophrenia, but that the majority of risk comes from common variants of small effect. These can be found, but as in other complex traits and diseases, such as obesity and height, considerable power is needed, because effect sizes are small, meaning greater samples sizes. This approach works: there are now almost 60 variants influencing height (Hirschhorn et al., 2009; Soranzo et al., 2009; Sovio et al., 2009). Furthermore, the genes identified so far from both traditional mapping, CNV analysis and GWAS, point to two biological pathways, the integrity of the synapse (neurexin 1, neurogranin, etc.) and the wnt/GSK3β signaling pathway (DISC1, TCF4, etc.), which is involved in functions such as neurogenesis in the brain. The identification of disease pathways for schizophrenia has major implications and should not be underestimated. It would be daft to lose nerve now and turn away from GWAS just as they are bearing fruit.

I would like to correct/expand on my comments to Peter Farley, to say that while statistical significance for some markers may be reached sooner, significance for many of the hundreds if not thousands of common schizophrenia susceptibility alleles of small effect might not emerge until samples of 100,000 cases and more than 100,000 controls have been collected. Another point is that organizations such the Wellcome Trust are already assembling case samples for schizophrenia as well as control samples.

Also, I would like to clarify that I believe the remainder of genetic variation, after common variation has been taken into account, will come from some combination of rare CNVs, other rare variants such as SNPs and other types of genetic marker such as variable number of tandem repeats (VNTRs) and of course the much neglected contribution from gene-environment interactions, in which main genetic effects may be obscured.

References:

Hirschhorn JN, Lettre G. Progress in genome-wide association studies of human height. Horm Res. 2009 Apr 1 ; 71 Suppl 2():5-13. Abstract

Soranzo N, Rivadeneira F, Chinappen-Horsley U, Malkina I, Richards JB, Hammond N, Stolk L, Nica A, Inouye M, Hofman A, Stephens J, Wheeler E, Arp P, Gwilliam R, Jhamai PM, Potter S, Chaney A, Ghori MJ, Ravindrarajah R, Ermakov S, Estrada K, Pols HA, Williams FM, McArdle WL, van Meurs JB, Loos RJ, Dermitzakis ET, Ahmadi KR, Hart DJ, Ouwehand WH, Wareham NJ, Barroso I, Sandhu MS, Strachan DP, Livshits G, Spector TD, Uitterlinden AG, Deloukas P. Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size. PLoS Genet. 2009 Apr 1 ; 5(4):e1000445. Abstract

Sovio U, Bennett AJ, Millwood IY, Molitor J, O'Reilly PF, Timpson NJ, Kaakinen M, Laitinen J, Haukka J, Pillas D, Tzoulaki I, Molitor J, Hoggart C, Coin LJ, Whittaker J, Pouta A, Hartikainen AL, Freimer NB, Widen E, Peltonen L, Elliott P, McCarthy MI, Jarvelin MR. Genetic determinants of height growth assessed longitudinally from infancy to adulthood in the northern Finland birth cohort 1966. PLoS Genet. 2009 Mar 1 ; 5(3):e1000409. Abstract

View all comments by David Collier

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Michael O'Donovan, SRF AdvisorNick CraddockMichael Owen (SRF Advisor)
Submitted 9 July 2009
Posted 9 July 2009

Some commentators in their reflections take a rather negative view on what has been achieved through the application of GWAS technology to schizophrenia and psychiatric disorders more generally. We strongly disagree with this position. Below, we give examples of a number of statements that can be made about the aetiology of schizophrenia and bipolar disorder that could not be made at high levels of confidence even two years ago that are based upon evidence deriving from the application of GWAS.

1. We know with confidence that the role of rare copy number variants in schizophrenia is not limited to 22q11DS (VCFS) (reviewed recently in O’Donovan et al., 2009). We do not yet know how much of a contribution, but we know the identity of an increasing number of these. Most span multiple genes so it may prove problematic as it has in 22q11DS to identify the relevant molecular mechanisms. However, for one locus, the CNVs are limited to a single gene: Neurexin1 (Kirov et al., 2008; Rujescu et al., 2009). Genetic findings are merely the start of the journey to a deeper biological understanding, but no doubt many neurobiological researchers have already embarked on that journey in respect of neurexin1.

2. Although we have argued in this forum that some of the major pre-GWAS findings in schizophrenia very likely reflect true susceptibility genes (DTNBP1, NRG1, etc), we now have at least 4 novel loci where the evidence is more definitive (ZNF804A, MHC, NRGN, TCF4), (O’Donovan et al., 2008a; ISC, 2009; Shi et al., 2009; Stefansson et al., 2009) and two novel loci (Ferreira et al., 2008) in bipolar disorder (ANK3 and CACNA1C), at least one of which (CACNA1C) additionally confers risk of schizophrenia (Green et al., 2009). This is obviously a small part of the picture, but it is certainly better than no picture at all. These findings also offer a much more secure foundation than the earlier findings upon which to build follow up studies, for example brain imaging, and cognitive phenotypes (Esslinger et al., 2009), and even candidate gene studies. We would not regard the first convincing evidence that altered calcium channel function is a primary aetiological event in at least some forms of psychosis as a trivial gain in knowledge.

3. We can say with confidence that common alleles of small effect are abundant in schizophrenia, and that they contribute to a substantial part of the population risk (ISC, 2009). Identifying any one of these at stringent levels of statistical significance may be challenging in terms of sample sizes. As we have pointed out before, merging multiple datasets may indeed obscure some true associations because of sometimes unpredictable relationships between risk alleles and those assayed indirectly in GWAS studies (Moskvina and O’Donovan, 2007). Nevertheless, that many of the same alleles are overrepresented in multiple independent GWAS datasets from different countries (ISC, 2009) means that larger samples offer the prospect of identifying many more of these. This is not to say that large samples are the only approach; genetic heterogeneity may well underpin some aspects of clinical heterogeneity (Craddock et al., 2009a). However, with the exception of individual large pedigrees, it is not yet evident which type of clinical sample one should base a small scale study on. It should also be self-evident that the analysis of multiple samples, each with a different phenotypic structure, will pose major problems in respect of multiple testing and subsequent replication. Moreover, ascertaining special samples that represent putative subtypes of the clinical (and endophenotypic) spectrum of psychosis will first require large samples to be carefully assessed and the relevant subjects extracted. Subsequently, downstream, evaluation of specific genotype-phenotype relationships will require the remainder of the clinical population to be genotyped in a suitably powered way to show that those effects are specific to some clinical features of the disorder. Increasingly, it is ascertainment and assessment that dominate the cost of GWAS studies so it is not clear this approach will achieve any economies. We must also remember that after a GWAS study, there remains the opportunity to look in a controlled manner for relatively specific associations in the context of the heterogeneous clinical picture. For example we are aware of a number of papers in development that will exploit the sorts of multi-locus tests reported by the ISC to refine diagnostics, and no doubt many other applications of this will emerge in the next year or so.

Critics should bear in mind that the GWAS data are not just there for the ‘headline’ genome-wide findings, but that the data will be available to mine for years to come. The findings reported to date are based on only the simplest analyses.

4. If it were the case that the thousands of SNPs of small effect were randomly distributed across biological systems, none being of more relevance to pathophysiology than another, identifying them would probably be a pointless endeavour. However, there is no reason to believe this will be the case. We have recently shown that in bipolar disorder, the GWAS signals are enriched in particular biological pathways (Holmans et al., 2009) and we also published strong evidence for a relatively selective involvement of the GABAergic system in schizoaffective disorder (Craddock et al., 2009b). We are aware of an as-yet unpublished independent sample with similar findings. We would not regard the first convincing evidence that altered GABA function is a primary aetiological event in at least some forms of psychosis as a trivial gain in knowledge.

Incidentally it is a common misconception that the identification of risk alleles of small effect necessarily confers no useful insights into pathogenesis and possible drug targets. For example, common alleles in PPARG and KCNJ11 have been robustly shown to confer risk to Type 2 diabetes (T2D) but with odds ratios in the region of only 1.14 (of similar magnitude to those revealed by GWAS of schizophrenia). PPARG encodes the target for the thiazolidinedione class of drugs used to treat T2D. KCNJ11 encodes part of the target for another class of diabetes drug, the sulphonylureas (Prokopenko et al., 2008). Moreover, studies of novel associated variants identified in T2D GWAS in healthy, non-diabetic, populations have demonstrated that for most, the primary effect on T2D susceptibility is mediated through deleterious effects on insulin secretion, rather than insulin action (Prokopenko et al., 2008). Further examples of insights into the biology of common diseases coming from the identification of loci of small effect are the implication of the complement system in age-related macular degeneration and autophagy in Crohn’s disease (Hirschhorn, 2009). Already, efforts are under way to translate the new recognition of the role of autophagy in Crohn’s disease into new therapeutic leads (Hirschhorn, 2009). Of course many of the loci identified in GWAS implicate genes whose functions are as yet largely or completely unknown, and determining those functions is a prerequisite of translating those findings. Nevertheless, we believe that the greatest benefits that will accrue from the continued discovery of risk loci through GWAS will come from the assembly of that information into novel disease pathways leading to novel therapeutic targets.

5. We can say with confidence that bipolar disorder and schizophrenia substantially overlap, at least in terms of polygenic risk (ISC, 2009). As clinicians, we do not regard that knowledge as a trivial achievement.

6. We can say with confidence from studies of CNVs that schizophrenia and autism share at least some risk factors in common (O’Donovan et al., 2009). We believe that is also an important insight.

The above are major achievements in what we expect to be a long but accelerating process of picking apart the origins of schizophrenia and other psychotic disorders. We do not think that any other research discipline in psychiatry has done more to advance that knowledge in the past 100 years.

Like that other common familial diseases, the genetics of schizophrenia and bipolar disorder is a “mixed economy” of common alleles of small effect and rare alleles of large and small effects, including CNVs. Those who are concerned at the cost of collecting large samples for GWAS studies must bear in mind that the robust identification of both types of mutation will require similarly large samples; we will just have to get used to that fact if we want to make progress. Collecting samples like this may be expensive, but as clinicians, we know those costs are trivial compared with the human and economic costs of psychotic disorders.

The question of phenotype definition is one which we have repeatedly addressed (Craddock et al., 2009a). Unquestionably, if we knew the true pathophysiological basis of these disorders, we could do better. The fact is that we don’t. Given that, it must be extremely encouraging that despite the problems, risk loci can be robustly identified by GWAS using samples defined by current diagnostic criteria. Moreover, armed with GWAS data in these heterogeneous populations, additional risk genes can be identified through strategies aimed at refining the phenotype that are not constrained by the current dichotomous view of the functional psychoses. We have shown at least one way in which this might be achieved without imposing a further burden of multiple testing (Craddock et al., 2009b), and have little doubt that others will emerge. We agree that approaches to phenotyping that more directly index underlying pathophysiology are highly appealing, and will ultimately be necessary for understanding the mechanistic relationships between gene and disorder. However, the two cardinal assumptions upon which the use of endophenotypes is predicated for gene discovery are questionable. First, there is little good evidence that putative endophenotypes are substantially simpler genetically than “exophenotypes” (Flint and Munafo, 2007). Second, there is rarely good evidence that the current crop of popular putative endophenotypes lie on the disease pathway, indeed there seems to be substantial pleiotropy in the genetics of complex traits, psychosis included (Prokopenko et al., 2008; O’Donovan et al., 2008b).

Finally, we reiterate that while only small parts of the heritability of any complex disorder have been accounted for, large-scale genetic approaches have been extremely successful in studies of non-psychiatric diseases (Manolio et al., 2008) and have led to substantial advances in our understanding of pathogenesis, even for diseases like Crohn’s disease where there was already prior knowledge of pathogenesis from other research methods (Mathew, 2008).

Psychiatry starts from a situation in which there is no robust prior knowledge of pathogenesis for the major phenotypes. Recent findings suggest that mental illness may be the medical field that will actually benefit most over the coming years from application of these powerful molecular genetic technologies.

References:
Craddock N, O'Donovan MC, Owen MJ. (2009a) Psychosis Genetics: Modeling the Relationship between Schizophrenia, Bipolar Disorder, and Mixed (or "Schizoaffective") Psychoses. Schizophrenia Bulletin 35(3):482-490. Abstract

Craddock N, Jones L, Jones IR, Kirov G, Green EK, Grozeva D, Moskvina V, Nikolov I, Hamshere ML, Vukcevic D, Caesar S, Gordon-Smith K, Fraser C, Russell E, Norton N, Breen G, St Clair D, Collier DA, Young AH, Ferrier IN, Farmer A, McGuffin P, Holmans PA, Wellcome Trust Case Control Consortium (WTCCC), Donnelly P, Owen MJ, O’Donovan MC. Strong genetic evidence for a selective influence of GABAA receptors on a component of the bipolar disorder phenotype. Molecular Psychiatry advanced online publication 1 July 2008; doi:10.1038/mp.2008.66. (b) Abstract

Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C, Haddad L, Mier D, Opitz von Boberfeld C, Raab K, Witt SH, Rietschel M, Cichon S, Meyer-Lindenberg A. (2009) Neural mechanisms of a genome-wide supported psychosis variant. Science 324(5927):605. Abstract

Ferreira MAR, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J, Kirov G, Perlis RH, Green EK, Smoller JW, Grozeva D, Stone J, Nikolov I, Chambert K, Hamshere ML, Nimgaonkar V, Moskvina V, Thase ME, Caesar S, Sachs GS, Franklin J, Gordon-Smith K, Ardlie KG, Gabriel SB, Fraser C, Blumenstiel B, Defelice M, Breen G, Gill M, Morris DW, Elkin A, Muir WJ, McGhee KA, Williamson R, MacIntyre DJ, McLean A, St Clair D, VanBeck M, Pereira A, Kandaswamy R, McQuillin A, Collier DA, Bass NJ, Young AH, Lawrence J, Ferrier IN, Anjorin A, Farmer A, Curtis D, Scolnick EM, McGuffin P, Daly MJ, Corvin AP, Holmans PA, Blackwood DH, Wellcome Trust Case Control Consortium (WTCCC), Gurling HM, Owen MJ, Purcell SM, Sklar P and Craddock NJ. (2008) Collaborative genome-wide association analysis of 10,596 individuals supports a role for Ankyrin-G (ANK3) and the alpha-1C subunit of the L-type voltage-gated calcium channel (CACNA1C) in bipolar disorder. Nature Genetics 40:1056-1058. Abstract

Flint J, Munafò MR. (2007) The endophenotype concept in psychiatric genetics. Psychological Medicine 37(2):163-180. Abstract

Green EK, Grozeva D, Jones I, Jones L, Kirov G, Caesar S, Gordon-Smith K, Fraser C, Forty L, Russell E, Hamshere ML, Moskvina V, Nikolov I, Farmer A, McGuffin P, Wellcome Trust Case Consortium, Holmans PA, Owen MJ, O’Donovan MC and Craddock N. (2009) Bipolar disorder risk allele at CACNA1C also confers risk to recurrent major depression and to schizophrenia. Molecular Psychiatry (in press).

Hirschhorn JN. (2009) Genomewide association studies--illuminating biologic pathways. New England Journal of Medicine 360(17):1699-1701. Abstract

Holmans P, Green E, Pahwa J, Ferreira M, Purcell S, Sklar P, Owen M, O’Donovan M, Craddock N. Gene ontology analysis of GWAS datasets provide insights into the biology of bipolar disorder. The American Journal of Human Genetics 2009 Jun 17 [Epub ahead of print]. International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009 Jul 1 [Epub ahead of print]. Abstract

Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M, O'Donovan MC, Erdogan F, Owen MJ, Ropers HH, Ullmann R. (2008) Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Human Molecular Genetics 17(3):458-465. Abstract

Manolio TA, Brooks LD, Collins FS. (2008) A HapMap harvest of insights into the genetics of common disease. Journal of Clinical Investigation 118(5):1590-1605. Abstract

Mathew CG. (2008) New links to the pathogenesis of Crohn disease provided by genome-wide association scans. Nature Review Genetics 9(1):9-14. Abstract

Moskvina V and O'Donovan MC. (2007) Detailed analysis of the relative power of direct and indirect association studies and the implications for their interpretation. Human Heredity 64(1):63-73. Abstract

O’Donovan MC, Kirov G, Owen MJ. (2008a) Phenotypic variations on the theme of CNVs. Nature Genetics 40(12):1392-1393. Abstract

O’Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, Nikolov I, Hamshere M, Carroll L, Georgieva L, Dwyer S, Holmans P, Marchini JL, Spencer C, Howie B, Leung H-T, Hartmann AM, Möller H-J, Morris DW, Shi Y, Feng G, Hoffmann P, Propping P, Vasilescu C, Maier W, Rietschel M, Zammit S, Schumacher J, Quinn EM, Schulze TG, Williams NM, Giegling I, Iwata N, Ikeda M, Darvasi A, Shifman S, He L, Duan J, Sanders AR, Levinson DF, Gejman P, Molecular Genetics of Schizophrenia Collaboration , Cichon S, Nöthen MM, Gill M, Corvin A, Rujescu D, Kirov G, Owen MJ. (2008b) Identification of novel schizophrenia loci by genome-wide association and follow-up. Nature Genetics 40:1053-1055. Abstract

O’Donovan MC, Craddock N, Owen MJ. Genetics of psychosis; Insights from views across the genome. Human Genetics 2009 Jun 12 [Epub ahead of print]. Abstract

Prokopenko I, McCarthy MI, Lindgren CM. (2008) Type 2 diabetes: new genes, new understanding. Trends in Genetics 24(12):613-621. Abstract

Rujescu D, Ingason A, Cichon S, Pietiläinen OP, Barnes MR, Toulopoulou T, Picchioni M, Vassos E, Ettinger U, Bramon E, Murray R, Ruggeri M, Tosato S, Bonetto C, Steinberg S, Sigurdsson E, Sigmundsson T, Petursson H, Gylfason A, Olason PI, Hardarsson G, Jonsdottir GA, Gustafsson O, Fossdal R, Giegling I, Möller HJ, Hartmann AM, Hoffmann P, Crombie C, Fraser G, Walker N, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Djurovic S, Melle I, Andreassen OA, Hansen T, Werge T, Kiemeney LA, Franke B, Veltman J, Buizer-Voskamp JE; GROUP Investigators, Sabatti C, Ophoff RA, Rietschel M, Nöthen MM, Stefansson K, Peltonen L, St Clair D, Stefansson H, Collier DA. (2009) Disruption of the neurexin 1 gene is associated with schizophrenia. Human Molecular Genetics 18(5):988-996. Abstract

Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I, Dudbridge F, Holmans PA, Whittemore AS, Mowry BJ, Olincy A, Amin F, Cloninger CR, Silverman JM, Buccola NG, Byerley WF, Black DW, Crowe RR, Oksenberg JR, Mirel DB, Kendler KS, Freedman R & Gejman PV. (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature doi:10.1038/nature08192. Abstract

Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietiläinen OPH, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Børglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Böttcher Y, Olesen J, Breuer R, Möller H-J, Giegling I, Rasmussen HB, Timm S, Mattheisen M, Bitter I, Réthelyi JM, Magnusdottir BB, Sigmundsson T, Olason P, Masson G, Gulcher JR, Haraldsson M, Fossdal R, Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S, Franke B, Strengman E, Kiemeney LA, GROUP†, Melle I, Djurovic S, Abramova L, Kaleda V, Sanjuan J, de Frutos R, Bramon E, Vassos E, Fraser G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need AC, Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Carracedo A, Arango C, Costas J, Jönsson EG, Terenius L, Agartz I, Petursson H, Nöthen MM, Rietschel M, Matthews PM, Muglia P, Peltonen L, St Clair D, Goldstein DB, Stefansson K, Collier DA & Genetic Risk and Outcome in Psychosis (GROUP). (2009) Common variants conferring risk of schizophrenia. Nature doi:10.1038/nature08186. Abstract

View all comments by Michael O'Donovan
View all comments by Nick Craddock
View all comments by Michael Owen

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Kevin J. Mitchell
Submitted 9 July 2009
Posted 9 July 2009

GWAS Results: Is the Glass Half Full or 95 Percent Empty?
The publication of the latest schizophrenia GWAS papers represents the culmination of a tremendous amount of work and unprecedented cooperation among a large number of researchers, for which they should be applauded. In addition to the hope of finding new “schizophrenia genes,” GWAS have been described by some of the researchers involved as, more fundamentally, a stern test of the common variants hypothesis. Based on the meagre haul of common variants dredged up by these three studies and their forerunners, this hypothesis should clearly now be resoundingly rejected—at least in the form that suggests that there is a large, but not enormous, number of such variants, which individually have modest, but not minuscule, effects. There are no common variants of even modest effect.

However, Purcell and colleagues now argue for a model involving vast numbers of variants, each of almost negligible effect alone. The authors show that an aggregate score derived from the top 10-50 percent of a set of 74,000 SNPs from the association results in a discovery sample can predict up to 3 percent of the variance in a target group. Simply put, a set of putative “risk alleles” can be defined in one sample and shown, collectively, to be very slightly (though highly significantly in a statistical sense) enriched in the test sample, compared to controls. This is consistent across several different schizophrenia samples and even in two bipolar disorder samples. The authors go on to perform a set of control analyses that suggest that these results are not due to obvious population stratification or genotype rate effects (although effects at this level are obviously prone to cryptic artifacts).

If taken at face value, what do these results mean? They imply some kind of polygenic effect on risk, but of what magnitude? The answer to that depends on the interpretation of the additional simulations performed by the authors. They argue that the risk allele set inevitably contains very many false positives, which dilute the predictive power of the real positives hidden among them. Based on this logic, if we only knew which were the real variants to look at, then the variance explained in the target group would be much greater.

To try and estimate the magnitude of the effect of the polygenic load of “true risk” alleles, the authors conducted a series of simulations, varying parameters such as allele frequencies, genotype relative risks, and linkage disequilibrium with genotyped markers. They claim that these analyses converge on a set of models that recapitulate the observed data and that all converge on a true level of variance explained of around 34 percent, demonstrating a large polygenic component to the genetic architecture of schizophrenia.

These simulations adopt a level of statistical abstraction that should induce a healthy level of skepticism or at least reserved judgment on their findings. Most fundamentally, they rely explicitly for their calculations of the true variance on a liability-threshold model of the genetic architecture of schizophrenia. In effect, the “test” of the model incorporates the assumption that the model is correct.

The liability-threshold model is an elegant statistical abstraction that allows the application of the powerful statistics of normal distributions. Unfortunately, it suffers from the fact that it has no support whatsoever and makes no biological sense. First, there is no justification for assuming a normal distribution of “underlying liability,” whatever that term is taken to mean. Second, as usual when it is invoked, the nature of this putative threshold is not explained, though it surreptitiously implies some form of very strong epistasis (to explain the difference in risk between someone with x liability alleles and someone else with x+1 alleles). If this model is not correct, then these simulations are fatally flawed.

Even if the model were correct, the calculations are far from convincing. From a starting set of 560 models, the authors arrive at seven that are consistent with the observed degree of prediction in the target samples. According to the authors, the fact that these seven models converge on a small range of values for the underlying variance explained by the markers is evidence that this value (around 34 percent) represents the true situation. What is not highlighted is the fact that the values for the actual additive genetic variance (taking into account incomplete linkage disequilibrium between the markers and the assumed causal variants) across these models ranges from 34 percent to 98 percent and that the number of SNPs assumed to be having an effect ranges from 4,625 to 74,062. This extreme variation in the derived models hardly inspires confidence in the authors’ claim that their data “strongly support a polygenic basis to schizophrenia that (1) involves common SNPs, [and] (2) explains at least one-third of the total variation in liability.” (italics added)

From a more theoretical perspective, it should be noted that a polygenic model involving thousands of common variants of tiny effect cannot explain and will not contribute to the observed heightened familial relative risks. Such risk can only be explained by a variant of large effect or by an oligogenic model involving at most two to three loci (Bodmer and Bonilla, 2008; Hemminki et al., 2008; Mitchell and Porteous, in preparation). It seems much more likely that the observed predictive power in the target samples represents a modest “genetic background” effect, which could influence the penetrance and expressivity of rare, causal mutations. However, if the point of GWAS is to find genetic variants that are predictive of risk or that shed light on the pathogenic mechanisms of the disease, then clearly, even if such variants can be found by massively increasing sample sizes, their identification alone would not achieve or even appreciably contribute to either of these goals.

References:

Hemminki K, Försti A, Bermejo JL. The “common disease-common variant” hypothesis and familial risks. PLoS ONE. 2008 Jun 18;3(6):e2504. Abstract

Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet. 2008 Jun;40(6):695-701. Abstract

View all comments by Kevin J. Mitchell

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  David J. Porteous, SRF Advisor
Submitted 9 July 2009
Posted 10 July 2009
  I recommend the Primary Papers

Thumbs up or down on schizophrenia GWAS?
The triumvirate of schizophrenia GWAS studies just published in Nature gives cause for thought, and bears close scrutiny and reflection. To my reading, these three studies individually and collectively lead to an unambiguous conclusion—there is a lot of genetic heterogeneity and not one individual variant of common ancient origin accounts for a significant fraction of the genetic liability. To put it another way, there is no ApoE equivalent for schizophrenia. Strong past claims for ZNF804A and others look to have fallen by the statistical wayside. Putting the results of all three studies together does appear to provide support for a long known, pre-GWAS association with HLA, but otherwise it is hard to give a strong "thumbs up" to any specific result, not least because of the lack of replication between studies. The results are nevertheless important because the common disease, common variant model, on which GWAS are based and the associated cost justified, is strongly rejected as the main contributor to the genetic variance.

The ISC proposes a highly polygenic model with thousands of variants having an additive effect on both schizophrenia and bipolar disorder. I find no fault with their evidence, but its meaning and interpretation remains speculative. Simply consider the fact that SNPs carefully selected to tag half the genome account for about a third of the variance. It follows that the lion's share has gone undetected and will, by design and limitation, remain impervious to the GWAS strategy.

Part of the GWAS appeal is that the genotyping is technically facile and it is easier to collect lots of cases than it is families, but for as long as a diagnosis of schizophrenia or BP depends upon DSM-IV or ICD-10 classification, then diagnostic uncertainty will have a major effect on true power and validity of statistical association, both positive or negative. Indeed, the longstanding evidence from variable psychopathology amongst related individuals, the recent epidemiology evidence for shared genetic risk for schizophrenia and BP, and the further evidence supporting this from the ISC GWAS, all suggest that we should be returning more to family-based studies as a strategy to reduce genetic heterogeneity and find explanatory genetic variants. Plainly, adding ever more uncertainty through ever larger sample sizes is neither smart nor efficient.

I would certainly give the thumbs up to the full and unencumbered release of the primary data to the community as a whole, as this could usefully recoup some of the GWAS investment. It would facilitate a range of statistical and bioinformatics analyses and, who knows, there might be hidden nuggets of statistical support for independent genetic and biological studies.

View all comments by David J. Porteous

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Sagiv Shifman
Submitted 11 July 2009
Posted 11 July 2009

The main question that arises from the three large genomewide association studies published in Nature is, What should we do next?

One important way forward would be to follow up the association findings in the MHC region. We need to understand the biological mechanism underlying this association. If the association signal is indeed related to infectious diseases, this line of inquiry may lead to the highly desired development of a treatment that might prevent the diseases in some cases.

One possible explanation for the association between schizophrenia and the MHC region (6p22.1) is that infection during pregnancy leads to disturbances of fetal brain development and increases the risk of schizophrenia later in life. A possible test for the theory of infectious diseases as risk factors for schizophrenia would be to study the associated SNPs in 6p22.1 in fathers and mothers of subjects with schizophrenia relative to parents of control subjects. If the 6p22.11 region is related to the tendency of mothers to be infected by viruses during pregnancy, we would expect the SNPs in 6p22.1 to be most strongly associated with being a mother to a subject with schizophrenia.

Another broader and more complicated part of the question is: What would be the best strategy for continued study of the genetic causes of schizophrenia? There shouldn’t be only one way to proceed. Testing samples that are 10 times larger seems likely to lead to the identification of more genes, but with much smaller effect size. Testing the association of common variants with schizophrenia is unlikely to lead to the development of genetic diagnostic tools in the near future. If we want to understand the biology of the disease, it might be easier to concentrate our efforts on the identification of rare inherited and non-inherited variants with large effect on the phenotype. Such rare variants are easier to model in animals (relative to common variants with very small functional effect) and might even account for a larger proportion of cases.

View all comments by Sagiv Shifman

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Alan BrownPaul Patterson
Submitted 17 July 2009
Posted 17 July 2009

The three companion papers in this week’s issue of Nature, in our view, support the case for investigating interaction between susceptibility genes and infectious exposures in schizophrenia. We and others have argued previously that genetic studies conducted in isolation from environmental factors, and studies of environmental influences in the absence of genetic data, are necessarily limited. Maternal influenza, rubella, toxoplasmosis, herpes simplex virus, and other infections have each been associated with an increased risk of schizophrenia, with effect sizes ranging from twofold to over fivefold. While these epidemiologic findings clearly require replication in independent cohorts, two new developments provide further support for the hypothesis. First, a growing number of animal studies of maternal immune activation have documented behavioral and brain phenotypes in offspring that are analogous to findings from clinical research in schizophrenia, and these findings are mediated in large part by specific cytokines (Meyer et al., 2009; Patterson, 2008). Second, recent evidence indicates that maternal infection is also related to deficits in executive and other cognitive functions and neuropathology thought to arise from disruptions in brain development (Brown et al., 2009a; Brown et al., 2009b).

While the MHC region contains genes not involved in the immune system, in light of the epidemiologic findings on maternal infection, it is intriguing to see that this region is once more implicated in genetic studies of schizophrenia as the importance of this region in the response to infectious insults cannot be ignored. Although it is heartening to see that the potential implications of these findings for infectious etiologies were raised in the article from the SGENE plus group, an analysis of the frequency of SNPs by season of birth falls well short of the type of research that will yield definitive findings on the relationships between susceptibility genes and infectious insults. Hence, we advocate a strategy aimed at large scale genetic analyses of schizophrenia cases using birth cohorts with infectious exposures documented from prospectively collected biological samples from the prenatal period. If the schizophrenia-related pathogenic mechanisms by which MHC-related genetic variants operate involve interactions with prenatal infection, we would expect that studies of gene-infection interaction will yield larger effect sizes than those found in these new papers. The evidence from these papers and the epidemiologic literature should also facilitate narrowing of the number of candidate genes to be tested for interactions with infectious insults, thereby ameliorating the potential for type I error due to multiple comparisons.

References:

Meyer U, Feldon J, Fatemi SH. In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci Biobehav Rev . 2009 Jul 1; 33(7):1061-79. Abstract

Patterson PH. Immune involvement in schizophrenia and autism: Etiology, pathology and animal models. Behav Brain Res. 2008 Dec 24; Abstract

Brown AS, Vinogradov S, Kremen WS, Poole JH, Deicken RF, Penner JD, McKeague IW, Kochetkova A, Kern D, Schaefer CA. Prenatal exposure to maternal infection and executive dysfunction in adult schizophrenia. Am J Psychiatry . 2009a Jun 1 ; 166(6):683-90. Abstract

Brown AS, Deicken RF, Vinogradov S, Kremen WS, Poole JH, Penner JD, Kochetkova A, Kern D, Schaefer CA. Prenatal infection and cavum septum pellucidum in adult schizophrenia. Schizophr Res . 2009b Mar 1 ; 108(1-3):285-7. Abstract

View all comments by Alan Brown
View all comments by Paul Patterson

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Javier Costas
Submitted 17 July 2009
Posted 17 July 2009
  I recommend the Primary Papers

Two hundred years after Darwin’s birth and 150 years after the publication of On the Origin of Species, these three papers in Nature show the important role of natural selection in shaping the genetic architecture of schizophrenia susceptibility. If we compare the GWAS results for schizophrenia with those obtained for other diseases, it seems that there are less common risk alleles and/or lower effect sizes in schizophrenia than in many other complex diseases (see, for instance, the online catalog of published GWAS at NHGRI). This fact strongly suggests that negative selection limits the spread of susceptibility alleles, as expected due to the decreased fertility of schizophrenic patients.

Interestingly, the MHC region may be an exception. This region represents a classical example of balancing selection, i.e., the presence of several variants at a locus maintained in a population by positive natural selection (Hughes and Nei, 1988). In the case of the MHC, this balancing selection seems to be related to pathogen resistance or MHC-dependent mating choice. Therefore, the presence of common schizophrenia susceptibility alleles at this locus might be explained by antagonistic pleiotropic effects of alleles maintained by natural selection.

If negative selection limits the spread of schizophrenia risk alleles, most of the genetic susceptibility to schizophrenia is likely due to rare variants. Resequencing technologies will allow the identification of many of these variants in the near future. In the meantime, it would be interesting to focus our attention on non-synonymous SNPs at low frequency. Based on human-chimpanzee comparisons and human sequencing data, Kryukov et al. (2008) have shown that a large fraction of de novo missense mutations are mildly deleterious (i.e., they are subject to weak negative selection) and therefore they can still reach detectable frequencies. Assuming that most of these mildly deleterious alleles may be detrimental (i.e., they confer risk for disease) the authors conclude that numerous rare functional SNPs may be major contributors to susceptibility to common diseases Kryukov et al., 2008. Similar conclusions were obtained by the analysis of the relative frequency distribution of non-synonymous SNPs depending on their probability to alter protein function (Barreiro et al., 2008; Gorlov et al., 2008). As shown by Evans et al. (2008), genomewide scans of non-synonymous SNPs might complement GWAS, being able to identify rare non-synonymous variants of intermediate penetrance not detectable by current GWAS panels.

References:

Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L (2008) Natural selection has driven population differentiation in modern humans. Nat Genet 40: 340-5. Abstract

Evans DM, Barrett JC, Cardon LR (2008) To what extent do scans of non-synonymous SNPs complement denser genome-wide association studies? Eur J Hum Genet 16: 718-23. Abstract

Gorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amos CI (2008) Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am J Hum Genet 82: 100-12. Abstract

Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335: 167-70. Abstract

Kryukov GV, Pennacchio LA, Sunyaev SR (2007) Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am J Hum Genet 80: 727-39. Abstract

View all comments by Javier Costas

Related News: GWAS Goes Bigger: Large Sample Sizes Uncover New Risk Loci, Additional Overlap in Schizophrenia and Bipolar Disorder

Comment by:  David J. Porteous, SRF Advisor
Submitted 21 September 2011
Posted 21 September 2011

Consorting with GWAS for schizophrenia and bipolar disorder: same message, (some) different genes
On 18 September 2011, Nature Genetics published the results from the Psychiatric Genetics Consortium of two separate, large-scale GWAS analyses, for schizophrenia (Ripke et al., 2011) and for bipolar disorder (Sklar et al., 2011), and a joint analysis of both. By combining forces across several consortia who have previously published separately, we should now have some clarity and definitive answers.

For schizophrenia, the Stage 1 GWAS discovery data came from 9,394 cases and 12,462 controls from 17 studies, imputing 1,252,901 SNPs. The Stage 2 replication sample comprised 8,442 cases and 21,397 controls. Of the 136 SNPs which reached genomewide significance in Stage 1, 129 (95 percent) mapped to the MHC locus, long known to be associated with risk of schizophrenia. Of the remaining seven SNPs, five mapped to previously identified loci. In total, just 10 loci met or exceeded the criteria of genomewide significance of p <5 x 10-8 at Stage 1 and/or Stage 2. The 10 "best" SNPs identified eight loci: MIR137, TRIM26, CSM1, CNNM2, NT5C2 and TCF4 were tagged by intragenic SNPs, while the remaining two were at some distance from a known gene (343 kb from PCGEM1 and 126 kb from CCDC68). More important than the absolute significance levels, the overall odds ratios (with 95 percent confidence intervals) ranged from 1.08 (0.96-1.20) to 1.40 (1.28-1.52). These fractional increases contrast with the ~10-fold increase in risk to the first-degree relative of someone with schizophrenia (Gottesman et al., 2010).

Six of these eight loci have been reported previously, but ZNF804A, a past favorite, was noticeably absent from the "top 10" list. The main attention now will surely be on MIR137, a newly discovered locus which encodes a microRNA, mir137, known to regulate neuronal development. The authors remark that 17 predicted MIR137 targets had a SNP with a p <10-4, more than twice as many as for the control gene set (p <0.01), though this relaxed significance cutoff seems somewhat arbitrary and warrants further examination. The result for MIR137 immediately begs the questions, Does the "risk" SNP affect MIR137 function directly or indirectly, and if so, does it affect the expression of any of the putative targets identified here? These are fairly straightforward questions: positive answers are vital to the biological validation of these statistical associations. As has been the case for follow-up studies of ZNF804A, however (reviewed by Donohoe et al., 2010), unequivocal answers from GWAS "hits" can be hard to come by, not least because of the very modest relative risks that they confer. Let us hope that this is not the case for MIR137, but it is of passing note that for two of the eight replication cohorts, the direction of effect for MIR137 was in the opposite direction from the Stage 1 finding. Taken together with the odds ratios reported in the range of 1.11-1.22, the effect size for the end phenotype of schizophrenia may be challenging to validate functionally. Perhaps a relevant intermediate phenotype more proximal to the gene will prove tractable.

For bipolar disorder, Stage 1 comprised 7,481 cases versus 9,250 controls, and identified 34 promising SNPs. These were replicated in Stage 2 in an independent set of 4,496 cases and a whopping 42,422 controls: 18 of the 34 SNPs survived at p <0.05. Taking Stage 1 and 2 together confirmed the previous "hot" finding for CACNA1C (Odds ratio = 1.14) and introduced a new candidate in ODZ4 (Odds ratio = 0.88, i.e., the minor allele is presumably "protective" or under some form of selection). Previous candidates ANK3 and SYNE1 looked promising at Stage 1, but did not replicate at Stage 2.

Finally, in a combined analysis of schizophrenia plus bipolar disorder versus controls, three of the respective "top 10" loci, CACNA1C, ANK3, and the ITIH3-ITIH4 region, came out as significant overall. This is consistent with the earlier evidence from the ISC for an overlap between the polygenic index for schizophrenia and bipolar disorder (Purcell et al., 2009). It is also consistent with the epidemiological evidence for shared genetic risk between schizophrenia and bipolar disorder (Lichtenstein et al., 2009; Gottesman et al., 2010).

What can we take from these studies? The authorship lists alone speak to the size of the collaborative effort involved and the sheer organizational task, depending on your point of view, that most of the positive findings were reported on previously could be seen as valuable "replication," or unnecessary duplication of cost and effort. Whichever way you look at it, though, just two new loci for schizophrenia and one for bipolar looks like a modest return for such a gargantuan investment. It begs the question as to whether the GWAS approach is gaining the hoped-for traction on major mental illness. Indeed, the evidence suggests that the technology tide is rapidly turning away from allelic association methods and towards rare mutation detection by copy number variation, exome, and/or whole-genome sequencing (Vacic et al., 2011; Xu et al., 2011).

Family studies are, as ever and always, of critical importance in genetics, and to distinguish between inherited and de-novo mutations. While the emphasis of GWAS has been on the impact of common, ancient allelic variation, it has become ever more obvious from both past linkage studies and from contemporary GWAS and CNV studies just how heterogeneous these conditions are, and how little note individual cases and families take of conventional DSM diagnostic boundaries. Improved genetic and other tools through which to stratify risk, define phenotypes, and predict outcomes are clearly needed. Whether such tools can be derived for GWAS data remains to be seen. It is important to remind ourselves of two things. First, case/association studies tell us something about the average impact (odds ratio, with confidence interval) of a given allele in the population studied. In these very large GWAS, this measure of impact will be approximating to the European population average. The odds ratios tell us that the impact per allele is modest. More importantly in some ways, the allele frequencies also tell us that the vast majority of allele carriers are not affected. Likewise, a high proportion of cases are not carriers. In the main, they are subtle risk modifiers rather than causal variants. That said, follow-up studies may define rare, functional genetic variants in MIR137 or CACNA1C or ANK3 that are tagged by the risk allele and that have sufficiently strong effects in a subset of cases for a causal link to be made. With this new GWAS data in hand, these sorts of questions can now be addressed.

It should also be said that there is clearly a wealth of potentially valuable information lying below the surface of the most statistically significant findings, but how to sort the true from the false associations? Should the MIR137 finding, and the targets of MIR137, be substantiated by biological analysis, then that would certainly be something well worth knowing and following up on. Network analysis by gene ontology and protein-protein interaction may yield more, but these approaches need to be approached with caution when not securely anchored from a biologically validated start point. Epistasis and pleiotropy are most likely playing a role, but even in these large sample sets, the power to determine statistical (as opposed to biological) evidence is challenging. All told, one is left thinking that more incisive findings have and will in the future come from family-based approaches, through structural studies (CNVs and chromosome translocations), and, in the near future, whole-genome sequencing of cases and relatives.

References:

Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, Lin DY, Duan J, Ophoff RA, Andreassen OA, Scolnick E, Cichon S, St Clair D, Corvin A, Gurling H, Werge T, Rujescu D, Blackwood DH, Pato CN, Malhotra AK, Purcell S, Dudbridge F, Neale BM, Rossin L, Visscher PM, Posthuma D, Ruderfer DM, Fanous A, Stefansson H, Steinberg S, Mowry BJ, Golimbet V, de Hert M, Jönsson EG, Bitter I, Pietiläinen OP, Collier DA, Tosato S, Agartz I, Albus M, Alexander M, Amdur RL, Amin F, Bass N, Bergen SE, Black DW, Børglum AD, Brown MA, Bruggeman R, Buccola NG, Byerley WF, Cahn W, Cantor RM, Carr VJ, Catts SV, Choudhury K, Cloninger CR, Cormican P, Craddock N, Danoy PA, Datta S, de Haan L, Demontis D, Dikeos D, Djurovic S, Donnelly P, Donohoe G, Duong L, Dwyer S, Fink-Jensen A, Freedman R, Freimer NB, Friedl M, Georgieva L, Giegling I, Gill M, Glenthøj B, Godard S, Hamshere M, Hansen M, Hansen T, Hartmann AM, Henskens FA, Hougaard DM, Hultman CM, Ingason A, Jablensky AV, Jakobsen KD, Jay M, Jürgens G, Kahn RS, Keller MC, Kenis G, Kenny E, Kim Y, Kirov GK, Konnerth H, Konte B, Krabbendam L, Krasucki R, Lasseter VK, Laurent C, Lawrence J, Lencz T, Lerer FB, Liang KY, Lichtenstein P, Lieberman JA, Linszen DH, Lönnqvist J, Loughland CM, Maclean AW, Maher BS, Maier W, Mallet J, Malloy P, Mattheisen M, Mattingsdal M, McGhee KA, McGrath JJ, McIntosh A, McLean DE, McQuillin A, Melle I, Michie PT, Milanova V, Morris DW, Mors O, Mortensen PB, Moskvina V, Muglia P, Myin-Germeys I, Nertney DA, Nestadt G, Nielsen J, Nikolov I, Nordentoft M, Norton N, Nöthen MM, O'Dushlaine CT, Olincy A, Olsen L, O'Neill FA, Orntoft TF, Owen MJ, Pantelis C, Papadimitriou G, Pato MT, Peltonen L, Petursson H, Pickard B, Pimm J, Pulver AE, Puri V, Quested D, Quinn EM, Rasmussen HB, Réthelyi JM, Ribble R, Rietschel M, Riley BP, Ruggeri M, Schall U, Schulze TG, Schwab SG, Scott RJ, Shi J, Sigurdsson E, Silverman JM, Spencer CC, Stefansson K, Strange A, Strengman E, Stroup TS, Suvisaari J, Terenius L, Thirumalai S, Thygesen JH, Timm S, Toncheva D, van den Oord E, van Os J, van Winkel R, Veldink J, Walsh D, Wang AG, Wiersma D, Wildenauer DB, Williams HJ, Williams NM, Wormley B, Zammit S, Sullivan PF, O'Donovan MC, Daly MJ, Gejman PV. Genome-wide association study identifies five new schizophrenia loci. Nat Genet . 2011 Sep 18. Abstract

Psychiatric GWAS Consortium Bipolar Disorder Working Group, Sklar P, Ripke S, Scott LJ, Andreassen OA, Cichon S, Craddock N, Edenberg HJ, Nurnberger JI Jr, Rietschel M, Blackwood D, Corvin A, Flickinger M, Guan W, Mattingsdal M, McQuillin A, Kwan P, Wienker TF, Daly M, Dudbridge F, Holmans PA, Lin D, Burmeister M, Greenwood TA, Hamshere ML, Muglia P, Smith EN, Zandi PP, Nievergelt CM, McKinney R, Shilling PD, Schork NJ, Bloss CS, Foroud T, Koller DL, Gershon ES, Liu C, Badner JA, Scheftner WA, Lawson WB, Nwulia EA, Hipolito M, Coryell W, Rice J, Byerley W, McMahon FJ, Schulze TG, Berrettini W, Lohoff FW, Potash JB, Mahon PB, McInnis MG, Zöllner S, Zhang P, Craig DW, Szelinger S, Barrett TB, Breuer R, Meier S, Strohmaier J, Witt SH, Tozzi F, Farmer A, McGuffin P, Strauss J, Xu W, Kennedy JL, Vincent JB, Matthews K, Day R, Ferreira MA, O'Dushlaine C, Perlis R, Raychaudhuri S, Ruderfer D, Hyoun PL, Smoller JW, Li J, Absher D, Thompson RC, Meng FG, Schatzberg AF, Bunney WE, Barchas JD, Jones EG, Watson SJ, Myers RM, Akil H, Boehnke M, Chambert K, Moran J, Scolnick E, Djurovic S, Melle I, Morken G, Gill M, Morris D, Quinn E, Mühleisen TW, Degenhardt FA, Mattheisen M, Schumacher J, Maier W, Steffens M, Propping P, Nöthen MM, Anjorin A, Bass N, Gurling H, Kandaswamy R, Lawrence J, McGhee K, McIntosh A, McLean AW, Muir WJ, Pickard BS, Breen G, St Clair D, Caesar S, Gordon-Smith K, Jones L, Fraser C, Green EK, Grozeva D, Jones IR, Kirov G, Moskvina V, Nikolov I, O'Donovan MC, Owen MJ, Collier DA, Elkin A, Williamson R, Young AH, Ferrier IN, Stefansson K, Stefansson H, Thornorgeirsson T, Steinberg S, Gustafsson O, Bergen SE, Nimgaonkar V, Hultman C, Landén M, Lichtenstein P, Sullivan P, Schalling M, Osby U, Backlund L, Frisén L, Langstrom N, Jamain S, Leboyer M, Etain B, Bellivier F, Petursson H, Sigur Sson E, Müller-Mysok B, Lucae S, Schwarz M, Schofield PR, Martin N, Montgomery GW, Lathrop M, Oskarsson H, Bauer M, Wright A, Mitchell PB, Hautzinger M, Reif A, Kelsoe JR, Purcell SM. Large-scale genome-wide association analysis of bipolar disorder reveals a new susceptibility locus near ODZ4. Nat Genet. 2011 Sep 18. Abstract

Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF, Hultman CM. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet . 2009 Jan 17 ; 373(9659):234-9. Abstract

Gottesman II, Laursen TM, Bertelsen A, Mortensen PB. Severe mental disorders in offspring with 2 psychiatrically ill parents. Arch Gen Psychiatry . 2010 Mar 1 ; 67(3):252-7. Abstract

Donohoe G, Morris DW, Corvin A. The psychosis susceptibility gene ZNF804A: associations, functions, and phenotypes. Schizophr Bull . 2010 Sep 1 ; 36(5):904-9. Abstract

Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, Sklar P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature . 2009 Aug 6 ; 460(7256):748-52. Abstract

Vacic V, McCarthy S, Malhotra D, Murray F, Chou HH, Peoples A, Makarov V, Yoon S, Bhandari A, Corominas R, Iakoucheva LM, Krastoshevsky O, Krause V, Larach-Walters V, Welsh DK, Craig D, Kelsoe JR, Gershon ES, Leal SM, Dell Aquila M, Morris DW, Gill M, Corvin A, Insel PA, McClellan J, King MC, Karayiorgou M, Levy DL, DeLisi LE, Sebat J. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature . 2011 Mar 24 ; 471(7339):499-503. Abstract

Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, Gogos JA, Karayiorgou M. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet . 2011 Jan 1 ; 43(9):864-8. Abstract

View all comments by David J. Porteous

Related News: GWAS Goes Bigger: Large Sample Sizes Uncover New Risk Loci, Additional Overlap in Schizophrenia and Bipolar Disorder

Comment by:  Patrick Sullivan, SRF Advisor
Submitted 26 September 2011
Posted 26 September 2011
  I recommend the Primary Papers

The two papers appearing online in Nature Genetics last Sunday are truly important additions to our increasing knowledge base for these disorders. The core analyses have been presented multiple times at international meetings in the past two years.

Since then, the available sample sizes for both schizophrenia and bipolar disorder have grown considerably. If the recently published data are any guide, the next round of analyses should be particularly revealing.

The PGC results and almost all of the data that were used in these reports are available by application to the controlled-access repository.

Please see the references for views of this area that contrast with those of Professor Porteous.

References:

Sullivan P. Don't give up on GWAS. Molecular Psychiatry. 2011 Aug 9. Abstract

Kim Y, Zerwas S, Trace SE, Sullivan PF. Schizophrenia genetics: where next? Schizophr Bull. 2011;37:456-63. Abstract

View all comments by Patrick Sullivan

Related News: GWAS Goes Bigger: Large Sample Sizes Uncover New Risk Loci, Additional Overlap in Schizophrenia and Bipolar Disorder

Comment by:  Edward Scolnick
Submitted 28 September 2011
Posted 29 September 2011
  I recommend the Primary Papers

It is clear in human genetics that common variants and rare variants have frequently been detected in the same genes. Numerous examples exist in many diseases. The bashing of GWAS in schizophrenia and bipolar illness indicates, by those who make such comments, a lack of understanding of human genetics and where the field is. When these studies were initiated five years ago, next-generation sequencing was not available. Large samples of populations or trios or quartets did not exist. The international consortia have worked to collect such samples that are available for GWAS now, as well as for detailed sequencing studies. Before these studies began there was virtually nothing known about the etiology of schizophrenia and bipolar illness. The DISC1 gene translocation in the famous family was an important observation in that family. But almost a decade later there is still no convincing data that variants in Disc1 or many of its interacting proteins are involved in the pathogenesis of human schizophrenia or major mental illness.

Sequencing studies touted to be the Occam's razor for the field are beginning, and already, as in the past in this field, preemptive papers are appearing inadequately powered to draw any conclusions with certainty. Samples collected by the consortia will be critical to clarify the role of rare variants. This will take time and care so as not to set the field back into the morass it used to be. GWAS are basically modern public health epidemiology providing important clues to disease etiology. Much work is clearly needed once hits are found, just as it has been in traditional epidemiology. But in many fields, GWAS has already led to important biological insights, and it is certain it will do so in this field as well because the underlying principles of human genetics apply to this field, also. The primary problem in the field is totally inadequate funding by government organizations that consistently look for shortcuts to gain insights and new treatments, and forget how genetics has transformed cancer, immunology, autoimmune and inflammatory diseases, and led to better diagnostics and treatments. The field will never understand the pathogenesis of these illnesses until the genetic architecture is deciphered. The first enzyme discovered in E. coli DNA biochemistry was a repair enzyme—not the enzyme that replicated DNA—and this was discovered through genetics. The progress in this field has been dramatic in the past five years. All doing this work realize that this is only a beginning and that there is a long hard road to full understanding. But to denigrate the beginning, which is clearly solid, makes no sense and indicates a provincialism unbecoming to a true scientist.

View all comments by Edward Scolnick

Related News: GWAS Goes Bigger: Large Sample Sizes Uncover New Risk Loci, Additional Overlap in Schizophrenia and Bipolar Disorder

Comment by:  Nick CraddockMichael O'Donovan (SRF Advisor)
Submitted 11 October 2011
Posted 11 October 2011

At the start of the millennium, only two molecular genetic findings could be said with a fair amount of confidence to be etiologically relevant to schizophrenia and bipolar disorder. The first of these was that deletions of chromosome 22q11 that are known to cause velo-cardio-facial syndrome also confer a substantial increase in risk of psychosis. The second was the discovery by David St Clair, Douglas Blackwood, and colleagues (St Clair et al., 1990) of a balanced translocation involving chromosomes 1 and 11 that co-segregates with a range of psychiatric phenotypes in a single large family, was clearly relevant to the etiology of illness in that family (Blackwood et al., 2001). The latter finding has led to the conjecture, based upon a translocation breakpoint analysis reported by Kirsty Millar, David Porteous, and colleagues (Millar et al., 2000), that elevated risk in that family is conferred by altered function of a gene eponymously named DISC1. Just over a decade later, what can we now say with similar degrees of confidence? The relevance of deletions of 22q11 has stood the test of time—indeed, has strengthened—through further investigation (Levinson et al., 2011, being only one example), while the relevance of DISC1 remains conjecture. That the evidence implicating this gene is no stronger than it was all those years ago provides a clear illustration of the difficulties inherent in drawing etiological inferences from extremely rare mutations regardless of their effect size.

However, with the publication of several GWAS and CNV papers, culminating in the two mega-analyses reported by the PGC that are the subject of this commentary, one on schizophrenia, one on bipolar disorder, together reporting a total of six novel loci, very strong evidence has accumulated for approximately 20 new loci in psychosis. The majority of these are defined by SNPs, the remainder by copy number variants, and virtually all (including the rare, relatively high-penetrance CNVs) have emerged through the application of GWAS technology to large case-control samples, not through the study of linkage or families. Have GWAS approaches proven their worth? Clearly, the genetic findings represent the tip of a very deeply submerged iceberg, and it is possible that not all will stand the test of time and additional data, although the current levels of statistical support suggest the majority will do so. Nevertheless, the findings of SNP and CNV associations (including 22q11 deletions) seem to us to provide the first real signs of progress in uncovering strongly supported findings of primary etiological relevance to these disorders. Although SNP effects are small, the experience from other complex phenotypes is that statistically robust genetic associations, even those of very small effect, can highlight biological pathways of etiological (height; Lango Allen et al., 2010) and of possible therapeutic relevance (Alzheimer's disease; Jones et al., 2010). Moreover, it would seem intuitively likely that even if capturing the total heritable component of a disorder is presently a distant goal, the greater the number of associations captured, the better will be the snapshot of the sorts of processes that contribute to a disorder, and that might therefore be manipulated in its treatment. Thus, there is evidence that building even a very incomplete picture of the sort of genes that influence risk is an excellent method of informing understanding of pathogenesis of a highly complex disorder (or set of disorders).

As in previous GWAS and CNV endeavors, the PGC studies have required a significant degree of altruism from the hundreds of investigators and clinicians who have shared their data with little hope of significant academic credit. Moreover, where ethical approval permitted, the datasets have been made virtually open source for other investigators who are not part of the study. Sadly, this generosity of spirit is not matched in the rather curmudgeonly commentary provided by David Porteous. Rather than challenging the science or conduct of the study, it appears to us that the commentary takes the easier route of damnation by faint praise, distortion, and even innuendo.

The strongest finding, that being of association to the extended MHC region, is dismissed as "long known to be associated with risk of schizophrenia." How that knowledge was acquired a long time ago is unclear, but it cannot have been based upon data. It is true that weak and inconsistent associations at the MHC locus have been reported, even predating the molecular genetic era (McGuffin et al., 1978), but not until the landmark studies of the International Schizophrenia Consortium (2009), the Molecular Genetics of Schizophrenia Consortium (AbstractShi et al., 2009), and the SGENE+ Consortium (Stefansson et al., 2009) have the findings been strong enough to be described as knowledge. Porteous’ dismissive tone continues with the phrase "just 10 loci met….," the word "just" being a qualifier that seems designed to denigrate rather than challenge the results. Given the paucity of etiological clues, others might consider this a good yield. The observation in which the effect sizes at the detected loci are contrasted "with the ~10-fold increase in risk to the first-degree relative of someone with schizophrenia" is so fatuous it is difficult to believe its function is anything other than to insinuate in the mind of the reader the impression of failure. Yet no one remotely aware of the expectations behind GWAS would expect that the effect sizes of any common risk allele would bear any resemblance to that of family history, the latter reflecting the combined effects of many risk alleles.

Among the most important findings of the PGC schizophrenia group were those of strong evidence for association between a variant in the vicinity of a gene encoding regulatory RNA MIR137, and the subsequent finding that schizophrenia association signals were significantly enriched (P <0.01) among predicted targets of this regulatory RNA. Of course, like the other findings, there is room for the already very strong data to be further strengthened, but that finding alone opens up a whole new window in potential pathogenic mechanisms. Yet Porteous casually throws four handfuls of mud, dismissing the enrichment p <0.01 as a "relaxed significance cutoff," which "seems somewhat arbitrary," and that "warrants further examination," and commenting that "it is of passing note that for two of the eight replication cohorts, the direction of effect for MIR137 was in the opposite direction from the Stage 1 finding." If Porteous feels he has the expertise to pronounce on this analysis, it would behoove him well to choose his words more carefully. Since when is a P value of <0.01 "relaxed" when applied to a test of a single hypothesis? Can he really be unaware of the longstanding convention of regarding P <0.05 as significant in specific hypothesis testing? If he is not unaware of this, why is it generally applicable but "somewhat arbitrary" in the context of the PGC study? As for "further examination being warranted," this is true of any scientific finding, but what does he specifically mean in the context of his commentary? And why is it of "passing note" that not all samples show trends in the same direction? In the context of the well-known issues in GWAS concerning individual small samples and power, what is surprising about that? There may be simple answers to these questions, but we find it difficult to draw any other conclusion than that the choice of language is anything other than another attempt to sow seeds of doubt through innuendo rather than analysis.

The remark that "ZNF804A, a past favourite, was noticeably absent" falls well short of the standard one might expect of serious discourse. The choice of language suggests a desire to denigrate rather than analyse, and to insinuate without specific evidence that any interest in this gene should now be over. In fact, the largest study of this gene to date is that of Williams et al. (2010), which actually includes at least two-thirds of the PGC discovery dataset and is based on over 57,000 subjects, a sample almost three times as large as the mega-analysis sample of the PGC.

Porteous’ overall conclusion from the two studies is "whichever way you look at it, though, just two new loci for schizophrenia and one for bipolar looks like a modest return for such a gargantuan investment." This appraisal is misleading. The PGC studies were actually relatively small investments, being based on a synthesis of pre-existing data. Since the studies use existing data, there is naturally an expectation that some of the loci identified will have been previously reported as either significant or have otherwise been flagged up as of interest, while some will be new. Overall, the return on the GWAS investment is not just the six novel loci (rather than three); it is the totality of the findings, which, as noted above, currently number about 20 loci. The schizophrenia research community should also be made aware, if they are not already, that the return on these investments is not "one off"; it is cumulative. In the coming years, the component datasets will continue to generate a return in new gene discoveries (including CNVs yet to be reported by the PGC) as they are added (at essentially no cost) to other emerging GWAS datasets being generated largely through charitable support. With the returns in the bank already, one could (and we do) argue that the investment is negligible, particularly given the cost in human and economic terms of continued ignorance about these illnesses that blight so many lives.

It is true that with so little being known compared with what is yet to be known, the biological insights that can be made from the existing data are limited. This is equally true of the common and rare variants identified so far, and we are not aware of any of the "incisive findings" that Porteous claims have already come from alternative approaches, although the emergence of strong evidence for deletions at NRXN1 as a susceptibility variant for schizophrenia through meta-analysis of case-control GWAS data (one of the extra returns on the GWAS data we referred to above) deserves that description (Kirov et al., 2009). But this is not a cause for despair; in contrast to the future promises made on behalf of other as yet unproven designs, for eyes and minds that are open enough to see, the recent papers provide unambiguous evidence for a straightforward route to identifying more genes and pathways involved in the disorder. Even Porteous has partial sight of this, since he notes that "there is clearly a wealth of potentially valuable information lying below the surface of the most statistically significant findings." What he appears unable to see is "how to sort the true from the false associations?" The answer for a large number of loci is simple. Better-powered studies based upon larger sample sizes.

We would like to add a note of caution for those who too readily denigrate case-control approaches in favor of hyping other approaches, none of which are yet so well proven routes to success. We are not against those approaches; indeed, we are actively involved in them. But we are concerned that the hype surrounding sequencing, and the generation of what we think are unrealistic expectations, will make those designs vulnerable to attack from those who seem only too keen to make premature and inaccurate pronouncements of failure, who seem desperate to derive straw from nuggets of gold. If, as we believe is likely, it turns out to be quite a few years more before sequencing studies become sufficiently powered to provide large numbers of robust findings, as for GWAS, the consequence could be withdrawal of substantial government funding before those designs have had a chance to live up to their potential. That such an outcome has already largely been achieved for GWAS in some countries might be a source of rejoicing in some quarters, but it should also send out a warning to all who broadly hold the view that understanding the genetics of these disorders is central to understanding their origins, and to improving their future management.

The recent PGC papers represent an impressive, international collaboration based upon methodologies that have a proven track record in delivering important biological insights into other complex disorders, and now in psychiatry. Given the complexity of psychiatric phenotypes, we believe it is likely that a variety of approaches, paradigms, and ideas will be essential for success, including the approaches espoused by those who believe the evidence is compatible with essentially Mendelian inheritance. Inevitably, there will be sincerely held differences of opinion concerning the best way forward, and, of course, in any area of science, reasoned arguments based upon a fair assessment of the evidence are essential. Nevertheless, given there are sufficient uncertainties about what can be realistically delivered in the short term by the newer technologies, we suggest that the cause of bringing benefit to patients will most likely be better served by humility, realism, and a constructive discussion in which there is no place for belittling real achievements, for arrogance, or for dogmatic posturing.

References

Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ. Schizophrenia and affective disorders--cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet. 2001 Aug;69(2):428-33. Abstract

International Schizophrenia Consortium Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009 Aug 6;460(7256):748-52. Abstract

Jones L, Holmans PA, Hamshere ML, Harold D, Moskvina V, Ivanov D, et al. Genetic evidence implicates the immune system and cholesterol metabolism in the etiology of Alzheimer's disease. PLoS One. 2010 Nov 15;5(11):e13950. Erratum in: PLoS One. 2011;6(2). Abstract

Kirov G, Rujescu D, Ingason A, Collier DA, O'Donovan MC, Owen MJ. Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophr Bull. 2009 Sep;35(5):851-4. Epub 2009 Aug 12. Review. Abstract

Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010 Oct 14;467(7317):832-8. Abstract

Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J, et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry. 2011 Mar;168(3):302-16. Abstract

McGuffin P, Farmer AE, Rajah SM. Histocompatability antigens and schizophrenia. Br J Psychiatry. 1978 Feb;132:149-51. Abstract

Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet. 2000 May 22;9(9):1415-23. Abstract

Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009 Aug 6;460(7256):753-7. Abstract

St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G, et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet. 1990 Jul 7;336(8706):13-6. Abstract

Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al Common variants conferring risk of schizophrenia. Nature. 2009 Aug 6;460(7256):744-7. Abstract

The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011 Sep 18;43(10):969-976. Abstract

Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry. 2011 Apr;16(4):429-41. Abstract

View all comments by Nick Craddock
View all comments by Michael O'Donovan

Related News: GWAS Goes Bigger: Large Sample Sizes Uncover New Risk Loci, Additional Overlap in Schizophrenia and Bipolar Disorder

Comment by:  Todd LenczAnil Malhotra (SRF Advisor)
Submitted 11 October 2011
Posted 11 October 2011

It is worth re-emphasizing that efforts such as the Psychiatric GWAS Consortium do not rule out potentially important discoveries from alternative strategies such as endophenotypic approaches or examination of rare variants. Indeed, such strategies will be necessary to understand the functional mechanisms implicated by GWAS hits.

Moreover, we note that the two recently published PGC papers were not designed to exclude a role for previously identified candidate loci such as DISC1 (Hodgkinson et al., 2004), or prior GWAS findings such as rs1344706 at ZNF804A (Williams et al., 2011). For both these loci, and many others that have been proposed, meta-analysis of available samples suggest very small effect sizes (OR ~1.1), as might be expected for common variants. As noted in Supplementary Table S12 of the schizophrenia PGC paper (Ripke et al., 2011), the currently available sample size (~9,000 cases/~12,000 controls) of the discovery cohort was still underpowered to detect variants with odds ratios of 1.1, especially if they have a minor allele frequency of 20 percent or below.

An instructive example arises from the field of diabetes genetics. An association of a missense variant (rs1801282, Pro12Ala) in PPARG to type 2 diabetes was first reported in a sample of n = 91 Japanese-American patients (Deeb et al., 1998). Many subsequent studies failed to replicate the effect, and the initial large GWAS meta-analysis (involving >14,000 cases and ~18,000 controls; Zeggini et al., 2007) only detected the association at a p-value that would be considered non-significant by today’s standard (p =1.7*10-6). Interestingly, the authors deemed the association to be “confirmed,” and the result was widely accepted within that field. Subsequent meta-analysis, involving twice as many subjects (total n = 67,000), finally obtained conventional genomewide levels of significance (p <5*10-8; Gouda et al., 2010).

References:

Deeb SS, Fajas L, Nemoto M, Pihlajamäki J, Mykkänen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998 Nov;20(3):284-7. Abstract

Gouda HN, Sagoo GS, Harding AH, Yates J, Sandhu MS, Higgins JP. The association between the peroxisome proliferator-activated receptor-gamma2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am J Epidemiol. 2010 Mar 15;171(6):645-55. Abstract

Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH, Malhotra AK. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet. 2004 Nov;75(5):862-72. Abstract

Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, Georgieva L, Williams NM, Morris DW, Quinn EM, Giegling I, Ikeda M, Wood J, Lencz T, Hultman C, Lichtenstein P, Thiselton D, Maher BS; Molecular Genetics of Schizophrenia Collaboration (MGS) International Schizophrenia Consortium (ISC), SGENE-plus, GROUP, Malhotra AK, Riley B, Kendler KS, Gill M, Sullivan P, Sklar P, Purcell S, Nimgaonkar VL, Kirov G, Holmans P, Corvin A, Rujescu D, Craddock N, Owen MJ, O'Donovan MC. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry. 2011 Apr;16(4):429-41. Abstract

Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, Rayner NW, Freathy RM, Barrett JC, Shields B, Morris AP, Ellard S, Groves CJ, Harries LW, Marchini JL, Owen KR, Knight B, Cardon LR, Walker M, Hitman GA, Morris AD, Doney AS; Wellcome Trust Case Control Consortium (WTCCC), McCarthy MI, Hattersley AT. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007 Jun 1;316(5829):1336-41. Abstract

View all comments by Todd Lencz
View all comments by Anil Malhotra

Related News: Evidence Mounts for the Maternal Inflammation Hypothesis of Schizophrenia

Comment by:  Stephen Marder, SRF Advisor
Submitted 10 July 2014
Posted 11 July 2014

Accumulating evidence indicates that activation of the maternal immune system—from infectious and non-infectious sources—increases the risk of schizophrenia. This interesting study using data from the Finnish Prenatal Study of Schizophrenia measured C-reactive protein, a general marker of inflammation, in maternal serum from 777 schizophrenia subjects and an equal number of controls. The importance of this study derives from the size of the sample and the strength of the relationship between immune activation and schizophrenia risk.

View all comments by Stephen Marder

Related News: Evidence Mounts for the Maternal Inflammation Hypothesis of Schizophrenia

Comment by:  Chris Carter
Submitted 16 July 2014
Posted 16 July 2014
  I recommend the Primary Papers

If the development of schizophrenia depends upon maternal infection, perhaps a large number of susceptibility genes (possibly related to infection susceptibility and the immune system) would be concentrated in maternal alleles, with other maternal/paternal genes contributing later in life, and in different ways, for the offspring.

Have there been , or are there programmed, any genome-wide association studies on non-schizophrenic mothers of schizophrenic patients? A comparison of maternal/paternal genetic donation might perhaps be a useful means of dissecting out the various pathways leading to disease.

View all comments by Chris Carter

Related News: Bigger Schizophrenia GWAS Reports More Than 100 Hits

Comment by:  David GoldmanColin Hodgkinson
Submitted 20 July 2014
Posted 21 July 2014

The fact that schizophrenia is moderately to highly heritable is yesterday’s news; however, this genetic study, because of its large magnitude and with >100 genome-wide significant loci, is a watershed event in the discovery of the genetic variation that must be responsible for this inheritance. There are limitations. The principal limitation is that not one of the findings reported in this paper meets the standard demanded in medical genetics. As reviewed by Flint and Munafo, and following the emphasis of the paper, the focus is on the statistical findings rather than the identification and validation of any one of the >100 genome-wide significant loci at the level of the functional nucleotide difference and how that translates into behavior.

In fact, the principle finding of this study is that no common coding sequence variant accounts for any large fraction of the genetic liability to schizophrenia. It is interesting to speculate on the nature of the genetic variation that causes schizophrenia based on the loci discovered here, which are responsible for an important but still small part of that genetic liability. However, the conclusion that the variants are regulatory in nature will have to await a more complete accounting of the genes and loci involved, and the actual identification of the loci responsible. This is different than pointing to significant associations to SNPs outside of coding regions and to lack of associations to SNPs within coding regions.

Despite the cold water thrown on the eight hundred candidate genes previously implicated in schizophrenia, all of which Flint and Munafo label as “of dubious value,” it is actually critically important that more than a few were among the genome-wide significant loci. Otherwise, and for example if genetic variation at no dopamine or glutamate gene was found to be important, one might doubt the validity of this study. We shouldn’t aggregate or characterize the other association results as if we really understand them or know why they did not generate signals in this genome-wide association study. Clearly some are false positives. Some involve VNTR loci that are not even captured by SNP arrays. Some may be valid in particular populations but not others where the functional variant is absent. Some may depend on the study of particular phenotypes that are not the schizophrenia diagnosis itself but are associated with the disease (for example COMT and cognitive phenotypes) or that can be conflated with schizophrenia (for example DISC1 and schizoaffective disorder).

This genome-wide association study is a starting point for studies on more than 100 genes to elucidate their roles in schizophrenia but it is also a challenge to all of us interested in the biology of schizophrenia. It is best to keep an open mind about the genes involved in schizophrenia and the types of alleles at these genes until some of those functional alleles have been verified.

View all comments by David Goldman
View all comments by Colin Hodgkinson

Related News: Bigger Schizophrenia GWAS Reports More Than 100 Hits

Comment by:  Francis McMahon, SRF Advisor
Submitted 22 July 2014
Posted 22 July 2014

Those of us who attended the annual meeting of the International Society of Psychiatric Genetics in Boston last October were electrified by the striking findings of the Psychiatric Genomics Consortium, reporting over a hundred genome-wide significant genetic marker associations in the largest ever genome-wide association study of schizophrenia. After what seemed like a long wait, this landmark work has now appeared in the journal Nature.

The results further demonstrate the highly polygenic nature of schizophrenia risk. The implicated genes represent a large range of biological functions and converge on a few well-known pathways, chiefly FMRP. The most significant individual finding remains the HLA region, adding to the now widely-held idea that immunity plays an important role in the etiology of schizophrenia.

What now? The mapping of functional alleles in individual genes is the logical next step, but will be a major challenge. Some critics will express skepticism that we have learned much more than we knew after the last large GWAS. Clearly the GWAS method works for schizophrenia – but will we now want to study even larger samples? Skeptics might reasonably ask what we will learn from the next 100 markers that we have not already learned from the first 100.

As a field, we should challenge ourselves to run at least one of these findings to ground, establishing the functional risk alleles and using this information to formulate bold new hypotheses about the causes and treatment of schizophrenia. Even one new effective medication that comes out of these findings will make the entire effort worthwhile.

View all comments by Francis McMahon

Related News: Bigger Schizophrenia GWAS Reports More Than 100 Hits

Comment by:  Bryan Roth, SRF Advisor
Submitted 22 July 2014
Posted 22 July 2014

This is indeed a "landmark paper" and one eagerly awaited by the field of psychiatry, and likely medicine in general.

One thing to emphasize (which was nicely stated in Tom Insel's blog) is that in no case was an actual gene identified. As these are all rather large loci which contain both open reading frames (ORFs) as well as non-coding regions (introns and probably other yet to be identified non-coding RNAs), the real work will be to identify the precise mutation(s) associated with the loci.

Additionally, it will be critically important to determine the directionality of the mutation(s) identified for each locus. Thus, before embarking on a drug discovery expedition, it is important to know if the particular mutations augment or inhibit the activity of the particular molecular entity imputed.

If we take DRD2 (D2-dopamine receptor) as an example, it is important to know if the mutations reside in the coding region and, if so, whether they alter expression, signaling, signaling bias, neuronal targeting, and so on. If the mutation(s) are in non-coding regions (introns, promoter regions, non-coding 3'-region), it will be important to understand how this might alter the expression/function of DRD2. For essentially all of the targets imputed to drive a drug discovery program forward, it is essential to know this information.

Thus, for the calcium channels implicated (CACNA1C, CACNB2, and CACNA1I, which encode voltage-gated calcium channel subunits), we need to know how (and if) the mutations ultimately identified affect channel function, as the design of drugs at these targets will depend upon whether we need to augment or inhibit activity.

Finally, as each of these risk alleles has only a minute effect on the overall risk for schizophrenia, it is unknown whether creating a drug which modulates the activity of a single target could ever lead to a population-wide effect on disease progression/outcome.

Nonetheless, these findings are foundational for the field and provide proof for the power of this approach.

View all comments by Bryan Roth

Related News: Bigger Schizophrenia GWAS Reports More Than 100 Hits

Comment by:  Philip Seeman (Disclosure)
Submitted 22 July 2014
Posted 22 July 2014

Of the many DNA regions found to be associated with schizophrenia in this study (Ripke et al., 2014), the only region that is associated with current treatment is the dopamine D2 receptor. The study shows that this DNA region is 50,000 bases away from the D2 gene and is in the DNA promoter region that controls the expression of the D2 gene. Let’s hope that other DNA regions may lead to improved treatment.

These current results support Van Rossum’s long-standing hyper-dopamine transmission theory of schizophrenia. While there are many causes for schizophrenia, it appears that a final common path for clinical signs and symptoms goes through dopamine D2 receptors.

References:

Ripke S. et al. Nature, July 21, 2014. doi 10.1038.nature13595.

View all comments by Philip Seeman