Schizophrenia Research Forum - A Catalyst for Creative Thinking

No Medium Rare for Schizophrenia Genetics?

3 August 2012. The rare genetic glitches with large contributions to schizophrenia risk may lie on the rarest end of the spectrum, according to a study published online August 2 in the American Journal of Human Genetics. From David Goldstein’s lab at Duke University in Durham, North Carolina, the study tries to validate 5,155 variants identified by sequencing 166 schizophrenia cases in a follow-up cohort of 2,617 cases and 1,800 controls, but comes up empty-handed: though some variants occurred exclusively in cases, none significantly associated with the disorder. This suggests that these variants are very rare, indeed, and determining whether they constitute true genetic risk factors requires larger sample sizes, along with gene-centered methods that combine variants hitting the same gene.

Schizophrenia appears to have its roots in a mixed economy of genetic factors, ranging from common variants that only slightly increase risk to rare ones with large effects (see SRF related news story). The rare-but-nasty category has been dominated by copy number variants (CNVs) in which segments of DNA containing many genes are deleted or duplicated. Next-generation sequencing promises to identify similarly rare single base changes, termed single nucleotide variants (SNVs), that could implicate a single gene. But sequencing the genomes or protein-encoding exomes of people with schizophrenia reveals thousands of variants (see SRF related news story). This has left researchers tossing about for principled ways of discriminating the causal from the inconsequential.

The new study tries one approach, in which the investigators cull a set of variants identified through exome sequencing, then look for additional supportive evidence in a separate, follow-up cohort large enough to validate any "moderately rare" variants. Defined as variants with a minor allele frequency of 1-5 percent, these occur more frequently than what is typically deemed "rare" (minor allele frequency <1 percent), but less frequently than the common variants (minor allele frequency >5 percent) explored in genomewide association studies (GWAS).

Follow the variants
First author Anna Need and colleagues sequenced exomes or genomes of 166 people with schizophrenia. This discovery sample largely consisted of treatment-resistant cases, and came from Finland or the United States. Of the 337,312 coding variants that turned up in sequencing, the researchers focused on the rarer ones, with a minor allele frequency of 5 percent or less, or those occurring exclusively in cases when compared to a control group of 307 sequenced samples. Of these, they selected those likely to change protein function, with the variant introducing a new stop codon or destroying a stop codon (nonsense); landing in a splice site; occurring within CNV regions already linked to schizophrenia or other neurodevelopment disorders; and resulting in an amino-acid change (missense) that was ranked as "probably damaging" by a tool that predicts protein function. This procedure winnowed the variants down to 5,788 for further exploration, 5,155 of which were genotyped successfully in a follow-up cohort.

Within the discovery cohort, none of the 5,788 variants was overrepresented in cases compared to controls with the study-wide level of significance corrected for multiple testing (p <1.5 x 10-7), but 428 did meet a lower criterion of p <0.05. Because true schizophrenia-related variants might lie among the false positives in this group, the researchers included these 428 in the set of 5,155 variants genotyped in the follow-up sample of 2,617 cases (which was not dominated by treatment-resistant cases) and 1,800 controls. No variant significantly associated with schizophrenia in the follow-up cohort, or when combining the follow-up sample with the discovery sample.

An exclusive club, for now
Because true risk variants that are scarcer than "moderately rare" would not be expected to reach statistical significance with this sample size, the researchers also tracked the seemingly case-specific variants from the discovery cohort in the follow-up cohort. These variants consisted of "non-private" ones found twice or more in discovery cases but not in discovery controls, and found once in discovery cases but not in discovery controls. This undid the seemingly case-exclusive nature of most of these. For example, of the non-private variants found exclusively in cases in the discovery cohort, 60 percent were found also in controls in the follow-up group. Of the private ones, 39 percent were found in controls.

But a handful of variants remained, with some found in additional cases. None of the genes containing these SNVs will ring many bells for schizophrenia researchers, however. The top hit was a variant found in five cases, and not in the 2,120 follow-up controls or in 5,379 control samples from the Exome Variant Server database. This variant was a missense mutation in KL, a gene more widely known for roles in the renal and cardiovascular systems. Intriguingly, this gene is also linked to vitamin D metabolism, which recalls the epidemiological evidence for vitamin D deficiency as a risk factor for schizophrenia (see SRF related news story).

Twenty-three other variants were found in three or more cases, and not in any of the follow-up or Exome Variant Server controls. Other genes included ZNF804B, a relation of the schizophrenia risk factor ZNF804A; PCLO, which encodes a component of synaptic machinery; and EPB41L1, which encodes a protein that associates with the AMPA subtype of glutamate receptors.

Gene-based collapsing
The researchers conclude that their study does not offer much support for a contribution of moderately rare variants to schizophrenia risk. Still, they point out that, because they dealt only with exome SNVs, this leaves unexamined the regulatory regions highlighted by miR-137, a non-coding microRNA that regulates expression of other genes and ranks as a top hit in the largest-yet GWAS of schizophrenia (see SRF related news story). The researchers also note ethnic and clinical differences in the makeup of their discovery and follow-up cohorts, which may have muddled validation.

But if their study does begin to sketch the truth, how best to go about detecting the rare variants? Collecting larger sample sizes could certainly help, but the researchers also propose shifting from variant-centered to gene-centered analyses (Dering et al., 2011). By considering variants that affect the same gene together, these gene-based collapsing methods not only ease the difficulties of statistics on rare events, but also move closer to a description of the biological pathways disrupted in schizophrenia.—Michele Solis.

Reference:
Need AC, McEvoy JP, Gennarelli M, Heinzen EL, Ge D, Maia JM, Shianna KV, He M, Cirulli ET, Gumbs CE, Zhao Q, Campbell CR, Hong L, Rosenquist P, Putkonen A, Hallikainen T, Repo-Tiihonen E, Tiihonen J, Levy DL, Meltzer HY, Goldstein DB. Exome Sequencing Followed by Large-Scale Genotyping Suggests a Limited Role for Moderately Rare Risk Factors of Strong Effect in Schizophrenia. Am J Hum Genet 2012 August 10; 91: 1-10.

Comments on Related News


Related News: Research Roundup —The Tapestry of Environmental Influences in Psychosis

Comment by:  John McGrath, SRF Advisor
Submitted 5 November 2010
Posted 5 November 2010

The large study from Nuevo and colleagues is very thought provoking. There was substantial between-site variation in response to various psychosis-screening items. Assuming that endorsement of these items is a mix of: 1) "true" psychotic-like experiences, 2) "true" responses that are understandable from the perspective of local cultures and beliefs, and 3) innocent misinterpretations of the questions, why is there such marked variation? For example, why do 46 percent of respondents from Nepal endorse at least one psychotic-like experience and a third report auditory hallucinations?

It seems self-evident that populations with strong religious and/or cultural beliefs related to psychotic-like experiences might endorse psychosis-screening items more readily (type 2 in the above list). But could it be feasible that these same populations might also “kindle” psychotic experiences in vulnerable people? This notion is pure speculation, but we should remain mindful that dopaminergic pathways related to psychosis are vulnerable to the process of endogenous sensitization (Laruelle, 2000).

What does it mean to be a member of a cultural group that is more “prone” to psychotic-like experiences? Tanya Luhrmann, an anthropologist based at Stanford University, has examined individuals attending evangelical churches who “hear” the voice of God during prayer (Luhrmann et al., 2010). The vignettes suggest that some individuals reported more “hearing the voice of God” after improving their prayer skills. Practice makes perfect, but could it also kindle pathways related to schizophrenia?

Regardless of the underlying mechanisms, understanding variations in these symptoms is a fascinating topic worthy of more multidisciplinary research.

References:

Laruelle M. The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Brain Res Rev. 2000;31(2-3):371-84. Abstract

Luhrmann TM, Nusbaum H, Thisted R. The absorption hypothesis: learning to hear God in evangelical Christianity. American Anthropologist. 2010;112 (1):66-78.

View all comments by John McGrath

Related News: Research Roundup —The Tapestry of Environmental Influences in Psychosis

Comment by:  Tanya Luhrmann
Submitted 12 November 2010
Posted 12 November 2010

It seems to me that there may be two different patterns that show up in these large epidemiological studies: the psychotic continuum and phenomena associated with absorption. Absorption is basically a capacity for/interest in being caught up in your imagination. It is associated with hypnotizability and dissociation, but not identical to them (Tellegen and Atkinson, 1974).

In my own work on evangelical Christianity, I identify a pattern in which people report hallucination-like phenomena that are rare, brief, and not distressing (as opposed to the pattern associated with psychotic disorder, in which the hallucinations are often frequent, extended, and distressing). Those who report hearing God’s voice audibly or seeing the wing of an angel are also more likely to score highly on the Tellegen absorption scale (Luhrmann et al., 2010). This relationship between unusual experiences and absorption also shows up in a significant relationship between absorption and the Posey-Loesch hearing voices scale when these scales are given to undergraduates. Among undergraduates, the rates for hallucination-like phenomena are also consistently far higher than the Nuevo paper reports, perhaps because neither the absorption scale nor the Posey-Loesch scale seems to probe for pathology (Luhrmann, forthcoming).

I am not the only one to have found a significant association between unusual sensory experiences and absorption. Aleman and Laroi (2008) report that a handful of other researchers have also found significant correlations between hallucination scales and the absorption scale. As a result of this work, I think that there may be different pathways to hallucination-like phenomena—some pathological, others less so.

Yet, I also wonder whether there is indeed something like “priming” psychosis, as John suggested. This would arise if there were some looseness in the relationship between psychosis and dissociation, which there appears to be. At least that's the way I interpret some of the phenomena that Romme and Escher (1993) report. If there is some kind of loose relationship, it would suggest that someone could have an absorption/dissociation response to trauma that would look psychotic; it might also suggest that an intensely absorbing negative imaginative experience (being pursued by demons, e.g.) might contribute to a vulnerable person exhibiting more psychotic-like symptoms.

How would we begin to pull this apart?

References:

Aleman A, Laroi F. Hallucinations: The science of idiosyncratic perception. Washington, DC: American Psychological Association, 2008.

Luhrmann TM. When God speaks back. New York: Knopf, forthcoming.

Luhrmann TM, Nusbaum H, Thisted R. The absorption hypothesis: learning to hear God in evangelical Christianity. American Anthropologist. 2010;112 (1):66-78.

Romme M, Escher S. Accepting voices. London: Mind, 1993.

Tellegen A, Atkinson G. Openness to absorbing and self-altering experiences (“absorption”): a trait related to hypnotic susceptibility. J Abnorm Psychol. 1974;83(3):268-77. Abstract

View all comments by Tanya Luhrmann

Related News: Research Roundup —The Tapestry of Environmental Influences in Psychosis

Comment by:  Mary Cannon
Submitted 15 November 2010
Posted 15 November 2010

This beautifully written piece serves to excite interest in the fascinating epidemiology of schizophrenia. In our search for the “missing heritability” of schizophrenia, we don’t have to look too far for clues. There are many contained in this piece. It just requires some Sherlock Holmes-type deductive reasoning to put them all together now!

The realization that psychotic symptoms (or psychotic-like experiences) can be used as a proxy for schizophrenia risk has opened up new vistas for exploration (Kelleher and Cannon, 2010). For instance, the paper by Nuevo and colleagues will provide a fertile ground for testing ecological hypotheses on the etiology of schizophrenia—such as examining cross-national vitamin D levels (McGrath et al.) or fish oil consumption. Geneticists have yet to appreciate the potential value of studying such symptoms. Ian Kelleher, Jack Jenner, and I have argued in a recent editorial that the non-clinical psychosis phenotype provides us with a population in which to test hypotheses about the evolutionary benefit of psychosis genes (Kelleher et al., 2010; see also Nesse, 2004). This non-clinical psychosis phenotype gives rise to the possibility of moving beyond just-so stories into the realm of testable hypotheses.

References:

Kelleher I, Cannon M. Psychotic-like experiences in the general population: characterizing a high-risk group for psychosis. Psychol Med. 2010 May 19:1-6. Abstract

Kelleher I, Jenner JA, Cannon M. Psychotic symptoms in the general population - an evolutionary perspective. Br J Psychiatry. 2010 Sep;197(3):167-9.

Nesse RM. Cliff-edged fitness functions and the persistence of schizophrenia. Behav Brain Sci. 2004;27:862-3.

View all comments by Mary Cannon

Related News: Research Roundup —The Tapestry of Environmental Influences in Psychosis

Comment by:  Jean-Paul Selten
Submitted 17 November 2010
Posted 17 November 2010
  I recommend the Primary Papers

With interest, I read Victoria Wilcox's summary of some thought-provoking papers published this year. It seems that schizophrenia, like cancer, has many different causes. I would like to point out that three of the studies (Zammit et al., 2010; Wicks et al., 2010; Schofield et al., 2010) support the idea that social defeat and/or social exclusion increase risk. The paper by Zammit et al. showed this in an elegant way: being different from the mainstream, no matter on what account, increased the subject's risk. The next step is to show that social exclusion has an impact on an individual's dopamine function. My group is examining this in young adults with an acquired hearing impairment, using SPECT.

References:

Zammit S, Lewis G, Rasbash J, Dalman C, Gustafsson J-E, Allebeck P. Individuals, schools, and neighborhood: a multilevel longitudinal study of variation in incidence of psychotic disorders. Arch Gen Psychiatry. 2010 Sep;67(9):914-22. Abstract

Wicks S, Hjern A, Dalman C. Social risk or genetic liability for psychosis? A study of children born in Sweden and reared by adoptive parents. Am J Psychiatry. 2010 Oct;167(10):1240-6. Epub 2010 Aug 4. Abstract

Schofield P, Ashworth M, Jones R. Ethnic isolation and psychosis: re-examining the ethnic density effect. Psychol Med. 2010 Sep 22:1-7. Abstract

View all comments by Jean-Paul Selten

Related News: Research Roundup —The Tapestry of Environmental Influences in Psychosis

Comment by:  Chris Carter
Submitted 26 November 2010
Posted 26 November 2010
  I recommend the Primary Papers

I have been collecting diverse references for environmental risk factors in schizophrenia at Schizophrenia Risk Factors. These include many prenatal influences due to maternal infection, usually with some sort of virus, or immune activation with fever. Several animal studies have shown that infection or immune activation in mice can produce schizophrenia-like symptoms in the offspring. Toxoplasmosis has often been cited as a risk factor in adulthood.

Many of the genes implicated in schizophrenia are also involved in the life cycles of these pathogens, and interactions between genes and risk factors can together contribute to endophenotypes; for example, MICB and Herpes simplex infection have single and combined effects on grey matter volume in the prefrontal cortex.

Over 600 genes have been associated with schizophrenia. When these were pumped through a Kegg pathway analysis, the usual suspects (neuregulin, dopamine, and glutamate pathways, among others) figure highly in the list of pathways. Immune-related pathways are also highly represented, as are many pathogen entry pathways, including that for toxoplasmosis, which heads the list. Some of the more exotic pathways, for example, Chaga’s disease, should be considered as generic, as well as specific.

These Kegg-generated data suggest that there are strong relationships between genes and risk factors. Perhaps stratification of GWAS data in relation to infection could take this into account.

References:

Bortolato M, Godar SC. Animal models of virus-induced neurobehavioral sequelae: recent advances, methodological issues, and future prospects. Interdiscip Perspect Infect Dis . 2010 Jan 1 ; 2010():380456. Abstract

Carter CJ. Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii. Schizophr Bull . 2009 Nov 1 ; 35(6):1163-82. Abstract

Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P, Shier A, Sheikh S, Bailey K. Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry . 1999 Mar 1 ; 4(2):145-54. Abstract

Fatemi SH, Pearce DA, Brooks AI, Sidwell RW. Prenatal viral infection in mouse causes differential expression of genes in brains of mouse progeny: a potential animal model for schizophrenia and autism. Synapse . 2005 Aug 1 ; 57(2):91-9. Abstractx

Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M. Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry . 2006 Mar 15 ; 59(6):546-54. Abstract

Prasad KM, Bamne MN, Shirts BH, Goradia D, Mannali V, Pancholi KM, Xue B, McClain L, Yolken RH, Keshavan MS, Nimgaonkar VL. Grey matter changes associated with host genetic variation and exposure to Herpes Simplex Virus 1 (HSV1) in first episode schizophrenia. Schizophr Res . 2010 May 1 ; 118(1-3):232-9. Abstract

Yolken RH, Torrey EF. Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol Psychiatry . 2008 May 1 ; 13(5):470-9. Abstract

Zuckerman L, Weiner I. Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res . 2005 May 1 ; 39(3):311-23. Abstract

View all comments by Chris Carter

Related News: GWAS Goes Bigger: Large Sample Sizes Uncover New Risk Loci, Additional Overlap in Schizophrenia and Bipolar Disorder

Comment by:  David J. Porteous, SRF Advisor
Submitted 21 September 2011
Posted 21 September 2011

Consorting with GWAS for schizophrenia and bipolar disorder: same message, (some) different genes
On 18 September 2011, Nature Genetics published the results from the Psychiatric Genetics Consortium of two separate, large-scale GWAS analyses, for schizophrenia (Ripke et al., 2011) and for bipolar disorder (Sklar et al., 2011), and a joint analysis of both. By combining forces across several consortia who have previously published separately, we should now have some clarity and definitive answers.

For schizophrenia, the Stage 1 GWAS discovery data came from 9,394 cases and 12,462 controls from 17 studies, imputing 1,252,901 SNPs. The Stage 2 replication sample comprised 8,442 cases and 21,397 controls. Of the 136 SNPs which reached genomewide significance in Stage 1, 129 (95 percent) mapped to the MHC locus, long known to be associated with risk of schizophrenia. Of the remaining seven SNPs, five mapped to previously identified loci. In total, just 10 loci met or exceeded the criteria of genomewide significance of p <5 x 10-8 at Stage 1 and/or Stage 2. The 10 "best" SNPs identified eight loci: MIR137, TRIM26, CSM1, CNNM2, NT5C2 and TCF4 were tagged by intragenic SNPs, while the remaining two were at some distance from a known gene (343 kb from PCGEM1 and 126 kb from CCDC68). More important than the absolute significance levels, the overall odds ratios (with 95 percent confidence intervals) ranged from 1.08 (0.96-1.20) to 1.40 (1.28-1.52). These fractional increases contrast with the ~10-fold increase in risk to the first-degree relative of someone with schizophrenia (Gottesman et al., 2010).

Six of these eight loci have been reported previously, but ZNF804A, a past favorite, was noticeably absent from the "top 10" list. The main attention now will surely be on MIR137, a newly discovered locus which encodes a microRNA, mir137, known to regulate neuronal development. The authors remark that 17 predicted MIR137 targets had a SNP with a p <10-4, more than twice as many as for the control gene set (p <0.01), though this relaxed significance cutoff seems somewhat arbitrary and warrants further examination. The result for MIR137 immediately begs the questions, Does the "risk" SNP affect MIR137 function directly or indirectly, and if so, does it affect the expression of any of the putative targets identified here? These are fairly straightforward questions: positive answers are vital to the biological validation of these statistical associations. As has been the case for follow-up studies of ZNF804A, however (reviewed by Donohoe et al., 2010), unequivocal answers from GWAS "hits" can be hard to come by, not least because of the very modest relative risks that they confer. Let us hope that this is not the case for MIR137, but it is of passing note that for two of the eight replication cohorts, the direction of effect for MIR137 was in the opposite direction from the Stage 1 finding. Taken together with the odds ratios reported in the range of 1.11-1.22, the effect size for the end phenotype of schizophrenia may be challenging to validate functionally. Perhaps a relevant intermediate phenotype more proximal to the gene will prove tractable.

For bipolar disorder, Stage 1 comprised 7,481 cases versus 9,250 controls, and identified 34 promising SNPs. These were replicated in Stage 2 in an independent set of 4,496 cases and a whopping 42,422 controls: 18 of the 34 SNPs survived at p <0.05. Taking Stage 1 and 2 together confirmed the previous "hot" finding for CACNA1C (Odds ratio = 1.14) and introduced a new candidate in ODZ4 (Odds ratio = 0.88, i.e., the minor allele is presumably "protective" or under some form of selection). Previous candidates ANK3 and SYNE1 looked promising at Stage 1, but did not replicate at Stage 2.

Finally, in a combined analysis of schizophrenia plus bipolar disorder versus controls, three of the respective "top 10" loci, CACNA1C, ANK3, and the ITIH3-ITIH4 region, came out as significant overall. This is consistent with the earlier evidence from the ISC for an overlap between the polygenic index for schizophrenia and bipolar disorder (Purcell et al., 2009). It is also consistent with the epidemiological evidence for shared genetic risk between schizophrenia and bipolar disorder (Lichtenstein et al., 2009; Gottesman et al., 2010).

What can we take from these studies? The authorship lists alone speak to the size of the collaborative effort involved and the sheer organizational task, depending on your point of view, that most of the positive findings were reported on previously could be seen as valuable "replication," or unnecessary duplication of cost and effort. Whichever way you look at it, though, just two new loci for schizophrenia and one for bipolar looks like a modest return for such a gargantuan investment. It begs the question as to whether the GWAS approach is gaining the hoped-for traction on major mental illness. Indeed, the evidence suggests that the technology tide is rapidly turning away from allelic association methods and towards rare mutation detection by copy number variation, exome, and/or whole-genome sequencing (Vacic et al., 2011; Xu et al., 2011).

Family studies are, as ever and always, of critical importance in genetics, and to distinguish between inherited and de-novo mutations. While the emphasis of GWAS has been on the impact of common, ancient allelic variation, it has become ever more obvious from both past linkage studies and from contemporary GWAS and CNV studies just how heterogeneous these conditions are, and how little note individual cases and families take of conventional DSM diagnostic boundaries. Improved genetic and other tools through which to stratify risk, define phenotypes, and predict outcomes are clearly needed. Whether such tools can be derived for GWAS data remains to be seen. It is important to remind ourselves of two things. First, case/association studies tell us something about the average impact (odds ratio, with confidence interval) of a given allele in the population studied. In these very large GWAS, this measure of impact will be approximating to the European population average. The odds ratios tell us that the impact per allele is modest. More importantly in some ways, the allele frequencies also tell us that the vast majority of allele carriers are not affected. Likewise, a high proportion of cases are not carriers. In the main, they are subtle risk modifiers rather than causal variants. That said, follow-up studies may define rare, functional genetic variants in MIR137 or CACNA1C or ANK3 that are tagged by the risk allele and that have sufficiently strong effects in a subset of cases for a causal link to be made. With this new GWAS data in hand, these sorts of questions can now be addressed.

It should also be said that there is clearly a wealth of potentially valuable information lying below the surface of the most statistically significant findings, but how to sort the true from the false associations? Should the MIR137 finding, and the targets of MIR137, be substantiated by biological analysis, then that would certainly be something well worth knowing and following up on. Network analysis by gene ontology and protein-protein interaction may yield more, but these approaches need to be approached with caution when not securely anchored from a biologically validated start point. Epistasis and pleiotropy are most likely playing a role, but even in these large sample sets, the power to determine statistical (as opposed to biological) evidence is challenging. All told, one is left thinking that more incisive findings have and will in the future come from family-based approaches, through structural studies (CNVs and chromosome translocations), and, in the near future, whole-genome sequencing of cases and relatives.

References:

Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, Lin DY, Duan J, Ophoff RA, Andreassen OA, Scolnick E, Cichon S, St Clair D, Corvin A, Gurling H, Werge T, Rujescu D, Blackwood DH, Pato CN, Malhotra AK, Purcell S, Dudbridge F, Neale BM, Rossin L, Visscher PM, Posthuma D, Ruderfer DM, Fanous A, Stefansson H, Steinberg S, Mowry BJ, Golimbet V, de Hert M, Jönsson EG, Bitter I, Pietiläinen OP, Collier DA, Tosato S, Agartz I, Albus M, Alexander M, Amdur RL, Amin F, Bass N, Bergen SE, Black DW, Børglum AD, Brown MA, Bruggeman R, Buccola NG, Byerley WF, Cahn W, Cantor RM, Carr VJ, Catts SV, Choudhury K, Cloninger CR, Cormican P, Craddock N, Danoy PA, Datta S, de Haan L, Demontis D, Dikeos D, Djurovic S, Donnelly P, Donohoe G, Duong L, Dwyer S, Fink-Jensen A, Freedman R, Freimer NB, Friedl M, Georgieva L, Giegling I, Gill M, Glenthøj B, Godard S, Hamshere M, Hansen M, Hansen T, Hartmann AM, Henskens FA, Hougaard DM, Hultman CM, Ingason A, Jablensky AV, Jakobsen KD, Jay M, Jürgens G, Kahn RS, Keller MC, Kenis G, Kenny E, Kim Y, Kirov GK, Konnerth H, Konte B, Krabbendam L, Krasucki R, Lasseter VK, Laurent C, Lawrence J, Lencz T, Lerer FB, Liang KY, Lichtenstein P, Lieberman JA, Linszen DH, Lönnqvist J, Loughland CM, Maclean AW, Maher BS, Maier W, Mallet J, Malloy P, Mattheisen M, Mattingsdal M, McGhee KA, McGrath JJ, McIntosh A, McLean DE, McQuillin A, Melle I, Michie PT, Milanova V, Morris DW, Mors O, Mortensen PB, Moskvina V, Muglia P, Myin-Germeys I, Nertney DA, Nestadt G, Nielsen J, Nikolov I, Nordentoft M, Norton N, Nöthen MM, O'Dushlaine CT, Olincy A, Olsen L, O'Neill FA, Orntoft TF, Owen MJ, Pantelis C, Papadimitriou G, Pato MT, Peltonen L, Petursson H, Pickard B, Pimm J, Pulver AE, Puri V, Quested D, Quinn EM, Rasmussen HB, Réthelyi JM, Ribble R, Rietschel M, Riley BP, Ruggeri M, Schall U, Schulze TG, Schwab SG, Scott RJ, Shi J, Sigurdsson E, Silverman JM, Spencer CC, Stefansson K, Strange A, Strengman E, Stroup TS, Suvisaari J, Terenius L, Thirumalai S, Thygesen JH, Timm S, Toncheva D, van den Oord E, van Os J, van Winkel R, Veldink J, Walsh D, Wang AG, Wiersma D, Wildenauer DB, Williams HJ, Williams NM, Wormley B, Zammit S, Sullivan PF, O'Donovan MC, Daly MJ, Gejman PV. Genome-wide association study identifies five new schizophrenia loci. Nat Genet . 2011 Sep 18. Abstract

Psychiatric GWAS Consortium Bipolar Disorder Working Group, Sklar P, Ripke S, Scott LJ, Andreassen OA, Cichon S, Craddock N, Edenberg HJ, Nurnberger JI Jr, Rietschel M, Blackwood D, Corvin A, Flickinger M, Guan W, Mattingsdal M, McQuillin A, Kwan P, Wienker TF, Daly M, Dudbridge F, Holmans PA, Lin D, Burmeister M, Greenwood TA, Hamshere ML, Muglia P, Smith EN, Zandi PP, Nievergelt CM, McKinney R, Shilling PD, Schork NJ, Bloss CS, Foroud T, Koller DL, Gershon ES, Liu C, Badner JA, Scheftner WA, Lawson WB, Nwulia EA, Hipolito M, Coryell W, Rice J, Byerley W, McMahon FJ, Schulze TG, Berrettini W, Lohoff FW, Potash JB, Mahon PB, McInnis MG, Zöllner S, Zhang P, Craig DW, Szelinger S, Barrett TB, Breuer R, Meier S, Strohmaier J, Witt SH, Tozzi F, Farmer A, McGuffin P, Strauss J, Xu W, Kennedy JL, Vincent JB, Matthews K, Day R, Ferreira MA, O'Dushlaine C, Perlis R, Raychaudhuri S, Ruderfer D, Hyoun PL, Smoller JW, Li J, Absher D, Thompson RC, Meng FG, Schatzberg AF, Bunney WE, Barchas JD, Jones EG, Watson SJ, Myers RM, Akil H, Boehnke M, Chambert K, Moran J, Scolnick E, Djurovic S, Melle I, Morken G, Gill M, Morris D, Quinn E, Mühleisen TW, Degenhardt FA, Mattheisen M, Schumacher J, Maier W, Steffens M, Propping P, Nöthen MM, Anjorin A, Bass N, Gurling H, Kandaswamy R, Lawrence J, McGhee K, McIntosh A, McLean AW, Muir WJ, Pickard BS, Breen G, St Clair D, Caesar S, Gordon-Smith K, Jones L, Fraser C, Green EK, Grozeva D, Jones IR, Kirov G, Moskvina V, Nikolov I, O'Donovan MC, Owen MJ, Collier DA, Elkin A, Williamson R, Young AH, Ferrier IN, Stefansson K, Stefansson H, Thornorgeirsson T, Steinberg S, Gustafsson O, Bergen SE, Nimgaonkar V, Hultman C, Landén M, Lichtenstein P, Sullivan P, Schalling M, Osby U, Backlund L, Frisén L, Langstrom N, Jamain S, Leboyer M, Etain B, Bellivier F, Petursson H, Sigur Sson E, Müller-Mysok B, Lucae S, Schwarz M, Schofield PR, Martin N, Montgomery GW, Lathrop M, Oskarsson H, Bauer M, Wright A, Mitchell PB, Hautzinger M, Reif A, Kelsoe JR, Purcell SM. Large-scale genome-wide association analysis of bipolar disorder reveals a new susceptibility locus near ODZ4. Nat Genet. 2011 Sep 18. Abstract

Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF, Hultman CM. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet . 2009 Jan 17 ; 373(9659):234-9. Abstract

Gottesman II, Laursen TM, Bertelsen A, Mortensen PB. Severe mental disorders in offspring with 2 psychiatrically ill parents. Arch Gen Psychiatry . 2010 Mar 1 ; 67(3):252-7. Abstract

Donohoe G, Morris DW, Corvin A. The psychosis susceptibility gene ZNF804A: associations, functions, and phenotypes. Schizophr Bull . 2010 Sep 1 ; 36(5):904-9. Abstract

Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, Sklar P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature . 2009 Aug 6 ; 460(7256):748-52. Abstract

Vacic V, McCarthy S, Malhotra D, Murray F, Chou HH, Peoples A, Makarov V, Yoon S, Bhandari A, Corominas R, Iakoucheva LM, Krastoshevsky O, Krause V, Larach-Walters V, Welsh DK, Craig D, Kelsoe JR, Gershon ES, Leal SM, Dell Aquila M, Morris DW, Gill M, Corvin A, Insel PA, McClellan J, King MC, Karayiorgou M, Levy DL, DeLisi LE, Sebat J. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature . 2011 Mar 24 ; 471(7339):499-503. Abstract

Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, Gogos JA, Karayiorgou M. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet . 2011 Jan 1 ; 43(9):864-8. Abstract

View all comments by David J. Porteous

Related News: GWAS Goes Bigger: Large Sample Sizes Uncover New Risk Loci, Additional Overlap in Schizophrenia and Bipolar Disorder

Comment by:  Patrick Sullivan, SRF Advisor
Submitted 26 September 2011
Posted 26 September 2011
  I recommend the Primary Papers

The two papers appearing online in Nature Genetics last Sunday are truly important additions to our increasing knowledge base for these disorders. The core analyses have been presented multiple times at international meetings in the past two years.

Since then, the available sample sizes for both schizophrenia and bipolar disorder have grown considerably. If the recently published data are any guide, the next round of analyses should be particularly revealing.

The PGC results and almost all of the data that were used in these reports are available by application to the controlled-access repository.

Please see the references for views of this area that contrast with those of Professor Porteous.

References:

Sullivan P. Don't give up on GWAS. Molecular Psychiatry. 2011 Aug 9. Abstract

Kim Y, Zerwas S, Trace SE, Sullivan PF. Schizophrenia genetics: where next? Schizophr Bull. 2011;37:456-63. Abstract

View all comments by Patrick Sullivan

Related News: GWAS Goes Bigger: Large Sample Sizes Uncover New Risk Loci, Additional Overlap in Schizophrenia and Bipolar Disorder

Comment by:  Edward Scolnick
Submitted 28 September 2011
Posted 29 September 2011
  I recommend the Primary Papers

It is clear in human genetics that common variants and rare variants have frequently been detected in the same genes. Numerous examples exist in many diseases. The bashing of GWAS in schizophrenia and bipolar illness indicates, by those who make such comments, a lack of understanding of human genetics and where the field is. When these studies were initiated five years ago, next-generation sequencing was not available. Large samples of populations or trios or quartets did not exist. The international consortia have worked to collect such samples that are available for GWAS now, as well as for detailed sequencing studies. Before these studies began there was virtually nothing known about the etiology of schizophrenia and bipolar illness. The DISC1 gene translocation in the famous family was an important observation in that family. But almost a decade later there is still no convincing data that variants in Disc1 or many of its interacting proteins are involved in the pathogenesis of human schizophrenia or major mental illness.

Sequencing studies touted to be the Occam's razor for the field are beginning, and already, as in the past in this field, preemptive papers are appearing inadequately powered to draw any conclusions with certainty. Samples collected by the consortia will be critical to clarify the role of rare variants. This will take time and care so as not to set the field back into the morass it used to be. GWAS are basically modern public health epidemiology providing important clues to disease etiology. Much work is clearly needed once hits are found, just as it has been in traditional epidemiology. But in many fields, GWAS has already led to important biological insights, and it is certain it will do so in this field as well because the underlying principles of human genetics apply to this field, also. The primary problem in the field is totally inadequate funding by government organizations that consistently look for shortcuts to gain insights and new treatments, and forget how genetics has transformed cancer, immunology, autoimmune and inflammatory diseases, and led to better diagnostics and treatments. The field will never understand the pathogenesis of these illnesses until the genetic architecture is deciphered. The first enzyme discovered in E. coli DNA biochemistry was a repair enzyme—not the enzyme that replicated DNA—and this was discovered through genetics. The progress in this field has been dramatic in the past five years. All doing this work realize that this is only a beginning and that there is a long hard road to full understanding. But to denigrate the beginning, which is clearly solid, makes no sense and indicates a provincialism unbecoming to a true scientist.

View all comments by Edward Scolnick

Related News: GWAS Goes Bigger: Large Sample Sizes Uncover New Risk Loci, Additional Overlap in Schizophrenia and Bipolar Disorder

Comment by:  Nick CraddockMichael O'Donovan (SRF Advisor)
Submitted 11 October 2011
Posted 11 October 2011

At the start of the millennium, only two molecular genetic findings could be said with a fair amount of confidence to be etiologically relevant to schizophrenia and bipolar disorder. The first of these was that deletions of chromosome 22q11 that are known to cause velo-cardio-facial syndrome also confer a substantial increase in risk of psychosis. The second was the discovery by David St Clair, Douglas Blackwood, and colleagues (St Clair et al., 1990) of a balanced translocation involving chromosomes 1 and 11 that co-segregates with a range of psychiatric phenotypes in a single large family, was clearly relevant to the etiology of illness in that family (Blackwood et al., 2001). The latter finding has led to the conjecture, based upon a translocation breakpoint analysis reported by Kirsty Millar, David Porteous, and colleagues (Millar et al., 2000), that elevated risk in that family is conferred by altered function of a gene eponymously named DISC1. Just over a decade later, what can we now say with similar degrees of confidence? The relevance of deletions of 22q11 has stood the test of time—indeed, has strengthened—through further investigation (Levinson et al., 2011, being only one example), while the relevance of DISC1 remains conjecture. That the evidence implicating this gene is no stronger than it was all those years ago provides a clear illustration of the difficulties inherent in drawing etiological inferences from extremely rare mutations regardless of their effect size.

However, with the publication of several GWAS and CNV papers, culminating in the two mega-analyses reported by the PGC that are the subject of this commentary, one on schizophrenia, one on bipolar disorder, together reporting a total of six novel loci, very strong evidence has accumulated for approximately 20 new loci in psychosis. The majority of these are defined by SNPs, the remainder by copy number variants, and virtually all (including the rare, relatively high-penetrance CNVs) have emerged through the application of GWAS technology to large case-control samples, not through the study of linkage or families. Have GWAS approaches proven their worth? Clearly, the genetic findings represent the tip of a very deeply submerged iceberg, and it is possible that not all will stand the test of time and additional data, although the current levels of statistical support suggest the majority will do so. Nevertheless, the findings of SNP and CNV associations (including 22q11 deletions) seem to us to provide the first real signs of progress in uncovering strongly supported findings of primary etiological relevance to these disorders. Although SNP effects are small, the experience from other complex phenotypes is that statistically robust genetic associations, even those of very small effect, can highlight biological pathways of etiological (height; Lango Allen et al., 2010) and of possible therapeutic relevance (Alzheimer's disease; Jones et al., 2010). Moreover, it would seem intuitively likely that even if capturing the total heritable component of a disorder is presently a distant goal, the greater the number of associations captured, the better will be the snapshot of the sorts of processes that contribute to a disorder, and that might therefore be manipulated in its treatment. Thus, there is evidence that building even a very incomplete picture of the sort of genes that influence risk is an excellent method of informing understanding of pathogenesis of a highly complex disorder (or set of disorders).

As in previous GWAS and CNV endeavors, the PGC studies have required a significant degree of altruism from the hundreds of investigators and clinicians who have shared their data with little hope of significant academic credit. Moreover, where ethical approval permitted, the datasets have been made virtually open source for other investigators who are not part of the study. Sadly, this generosity of spirit is not matched in the rather curmudgeonly commentary provided by David Porteous. Rather than challenging the science or conduct of the study, it appears to us that the commentary takes the easier route of damnation by faint praise, distortion, and even innuendo.

The strongest finding, that being of association to the extended MHC region, is dismissed as "long known to be associated with risk of schizophrenia." How that knowledge was acquired a long time ago is unclear, but it cannot have been based upon data. It is true that weak and inconsistent associations at the MHC locus have been reported, even predating the molecular genetic era (McGuffin et al., 1978), but not until the landmark studies of the International Schizophrenia Consortium (2009), the Molecular Genetics of Schizophrenia Consortium (AbstractShi et al., 2009), and the SGENE+ Consortium (Stefansson et al., 2009) have the findings been strong enough to be described as knowledge. Porteous’ dismissive tone continues with the phrase "just 10 loci met….," the word "just" being a qualifier that seems designed to denigrate rather than challenge the results. Given the paucity of etiological clues, others might consider this a good yield. The observation in which the effect sizes at the detected loci are contrasted "with the ~10-fold increase in risk to the first-degree relative of someone with schizophrenia" is so fatuous it is difficult to believe its function is anything other than to insinuate in the mind of the reader the impression of failure. Yet no one remotely aware of the expectations behind GWAS would expect that the effect sizes of any common risk allele would bear any resemblance to that of family history, the latter reflecting the combined effects of many risk alleles.

Among the most important findings of the PGC schizophrenia group were those of strong evidence for association between a variant in the vicinity of a gene encoding regulatory RNA MIR137, and the subsequent finding that schizophrenia association signals were significantly enriched (P <0.01) among predicted targets of this regulatory RNA. Of course, like the other findings, there is room for the already very strong data to be further strengthened, but that finding alone opens up a whole new window in potential pathogenic mechanisms. Yet Porteous casually throws four handfuls of mud, dismissing the enrichment p <0.01 as a "relaxed significance cutoff," which "seems somewhat arbitrary," and that "warrants further examination," and commenting that "it is of passing note that for two of the eight replication cohorts, the direction of effect for MIR137 was in the opposite direction from the Stage 1 finding." If Porteous feels he has the expertise to pronounce on this analysis, it would behoove him well to choose his words more carefully. Since when is a P value of <0.01 "relaxed" when applied to a test of a single hypothesis? Can he really be unaware of the longstanding convention of regarding P <0.05 as significant in specific hypothesis testing? If he is not unaware of this, why is it generally applicable but "somewhat arbitrary" in the context of the PGC study? As for "further examination being warranted," this is true of any scientific finding, but what does he specifically mean in the context of his commentary? And why is it of "passing note" that not all samples show trends in the same direction? In the context of the well-known issues in GWAS concerning individual small samples and power, what is surprising about that? There may be simple answers to these questions, but we find it difficult to draw any other conclusion than that the choice of language is anything other than another attempt to sow seeds of doubt through innuendo rather than analysis.

The remark that "ZNF804A, a past favourite, was noticeably absent" falls well short of the standard one might expect of serious discourse. The choice of language suggests a desire to denigrate rather than analyse, and to insinuate without specific evidence that any interest in this gene should now be over. In fact, the largest study of this gene to date is that of Williams et al. (2010), which actually includes at least two-thirds of the PGC discovery dataset and is based on over 57,000 subjects, a sample almost three times as large as the mega-analysis sample of the PGC.

Porteous’ overall conclusion from the two studies is "whichever way you look at it, though, just two new loci for schizophrenia and one for bipolar looks like a modest return for such a gargantuan investment." This appraisal is misleading. The PGC studies were actually relatively small investments, being based on a synthesis of pre-existing data. Since the studies use existing data, there is naturally an expectation that some of the loci identified will have been previously reported as either significant or have otherwise been flagged up as of interest, while some will be new. Overall, the return on the GWAS investment is not just the six novel loci (rather than three); it is the totality of the findings, which, as noted above, currently number about 20 loci. The schizophrenia research community should also be made aware, if they are not already, that the return on these investments is not "one off"; it is cumulative. In the coming years, the component datasets will continue to generate a return in new gene discoveries (including CNVs yet to be reported by the PGC) as they are added (at essentially no cost) to other emerging GWAS datasets being generated largely through charitable support. With the returns in the bank already, one could (and we do) argue that the investment is negligible, particularly given the cost in human and economic terms of continued ignorance about these illnesses that blight so many lives.

It is true that with so little being known compared with what is yet to be known, the biological insights that can be made from the existing data are limited. This is equally true of the common and rare variants identified so far, and we are not aware of any of the "incisive findings" that Porteous claims have already come from alternative approaches, although the emergence of strong evidence for deletions at NRXN1 as a susceptibility variant for schizophrenia through meta-analysis of case-control GWAS data (one of the extra returns on the GWAS data we referred to above) deserves that description (Kirov et al., 2009). But this is not a cause for despair; in contrast to the future promises made on behalf of other as yet unproven designs, for eyes and minds that are open enough to see, the recent papers provide unambiguous evidence for a straightforward route to identifying more genes and pathways involved in the disorder. Even Porteous has partial sight of this, since he notes that "there is clearly a wealth of potentially valuable information lying below the surface of the most statistically significant findings." What he appears unable to see is "how to sort the true from the false associations?" The answer for a large number of loci is simple. Better-powered studies based upon larger sample sizes.

We would like to add a note of caution for those who too readily denigrate case-control approaches in favor of hyping other approaches, none of which are yet so well proven routes to success. We are not against those approaches; indeed, we are actively involved in them. But we are concerned that the hype surrounding sequencing, and the generation of what we think are unrealistic expectations, will make those designs vulnerable to attack from those who seem only too keen to make premature and inaccurate pronouncements of failure, who seem desperate to derive straw from nuggets of gold. If, as we believe is likely, it turns out to be quite a few years more before sequencing studies become sufficiently powered to provide large numbers of robust findings, as for GWAS, the consequence could be withdrawal of substantial government funding before those designs have had a chance to live up to their potential. That such an outcome has already largely been achieved for GWAS in some countries might be a source of rejoicing in some quarters, but it should also send out a warning to all who broadly hold the view that understanding the genetics of these disorders is central to understanding their origins, and to improving their future management.

The recent PGC papers represent an impressive, international collaboration based upon methodologies that have a proven track record in delivering important biological insights into other complex disorders, and now in psychiatry. Given the complexity of psychiatric phenotypes, we believe it is likely that a variety of approaches, paradigms, and ideas will be essential for success, including the approaches espoused by those who believe the evidence is compatible with essentially Mendelian inheritance. Inevitably, there will be sincerely held differences of opinion concerning the best way forward, and, of course, in any area of science, reasoned arguments based upon a fair assessment of the evidence are essential. Nevertheless, given there are sufficient uncertainties about what can be realistically delivered in the short term by the newer technologies, we suggest that the cause of bringing benefit to patients will most likely be better served by humility, realism, and a constructive discussion in which there is no place for belittling real achievements, for arrogance, or for dogmatic posturing.

References

Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ. Schizophrenia and affective disorders--cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet. 2001 Aug;69(2):428-33. Abstract

International Schizophrenia Consortium Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009 Aug 6;460(7256):748-52. Abstract

Jones L, Holmans PA, Hamshere ML, Harold D, Moskvina V, Ivanov D, et al. Genetic evidence implicates the immune system and cholesterol metabolism in the etiology of Alzheimer's disease. PLoS One. 2010 Nov 15;5(11):e13950. Erratum in: PLoS One. 2011;6(2). Abstract

Kirov G, Rujescu D, Ingason A, Collier DA, O'Donovan MC, Owen MJ. Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophr Bull. 2009 Sep;35(5):851-4. Epub 2009 Aug 12. Review. Abstract

Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010 Oct 14;467(7317):832-8. Abstract

Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J, et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry. 2011 Mar;168(3):302-16. Abstract

McGuffin P, Farmer AE, Rajah SM. Histocompatability antigens and schizophrenia. Br J Psychiatry. 1978 Feb;132:149-51. Abstract

Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet. 2000 May 22;9(9):1415-23. Abstract

Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009 Aug 6;460(7256):753-7. Abstract

St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G, et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet. 1990 Jul 7;336(8706):13-6. Abstract

Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al Common variants conferring risk of schizophrenia. Nature. 2009 Aug 6;460(7256):744-7. Abstract

The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011 Sep 18;43(10):969-976. Abstract

Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry. 2011 Apr;16(4):429-41. Abstract

View all comments by Nick Craddock
View all comments by Michael O'Donovan

Related News: GWAS Goes Bigger: Large Sample Sizes Uncover New Risk Loci, Additional Overlap in Schizophrenia and Bipolar Disorder

Comment by:  Todd LenczAnil Malhotra (SRF Advisor)
Submitted 11 October 2011
Posted 11 October 2011

It is worth re-emphasizing that efforts such as the Psychiatric GWAS Consortium do not rule out potentially important discoveries from alternative strategies such as endophenotypic approaches or examination of rare variants. Indeed, such strategies will be necessary to understand the functional mechanisms implicated by GWAS hits.

Moreover, we note that the two recently published PGC papers were not designed to exclude a role for previously identified candidate loci such as DISC1 (Hodgkinson et al., 2004), or prior GWAS findings such as rs1344706 at ZNF804A (Williams et al., 2011). For both these loci, and many others that have been proposed, meta-analysis of available samples suggest very small effect sizes (OR ~1.1), as might be expected for common variants. As noted in Supplementary Table S12 of the schizophrenia PGC paper (Ripke et al., 2011), the currently available sample size (~9,000 cases/~12,000 controls) of the discovery cohort was still underpowered to detect variants with odds ratios of 1.1, especially if they have a minor allele frequency of 20 percent or below.

An instructive example arises from the field of diabetes genetics. An association of a missense variant (rs1801282, Pro12Ala) in PPARG to type 2 diabetes was first reported in a sample of n = 91 Japanese-American patients (Deeb et al., 1998). Many subsequent studies failed to replicate the effect, and the initial large GWAS meta-analysis (involving >14,000 cases and ~18,000 controls; Zeggini et al., 2007) only detected the association at a p-value that would be considered non-significant by today’s standard (p =1.7*10-6). Interestingly, the authors deemed the association to be “confirmed,” and the result was widely accepted within that field. Subsequent meta-analysis, involving twice as many subjects (total n = 67,000), finally obtained conventional genomewide levels of significance (p <5*10-8; Gouda et al., 2010).

References:

Deeb SS, Fajas L, Nemoto M, Pihlajamäki J, Mykkänen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998 Nov;20(3):284-7. Abstract

Gouda HN, Sagoo GS, Harding AH, Yates J, Sandhu MS, Higgins JP. The association between the peroxisome proliferator-activated receptor-gamma2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am J Epidemiol. 2010 Mar 15;171(6):645-55. Abstract

Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH, Malhotra AK. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet. 2004 Nov;75(5):862-72. Abstract

Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, Georgieva L, Williams NM, Morris DW, Quinn EM, Giegling I, Ikeda M, Wood J, Lencz T, Hultman C, Lichtenstein P, Thiselton D, Maher BS; Molecular Genetics of Schizophrenia Collaboration (MGS) International Schizophrenia Consortium (ISC), SGENE-plus, GROUP, Malhotra AK, Riley B, Kendler KS, Gill M, Sullivan P, Sklar P, Purcell S, Nimgaonkar VL, Kirov G, Holmans P, Corvin A, Rujescu D, Craddock N, Owen MJ, O'Donovan MC. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry. 2011 Apr;16(4):429-41. Abstract

Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, Rayner NW, Freathy RM, Barrett JC, Shields B, Morris AP, Ellard S, Groves CJ, Harries LW, Marchini JL, Owen KR, Knight B, Cardon LR, Walker M, Hitman GA, Morris AD, Doney AS; Wellcome Trust Case Control Consortium (WTCCC), McCarthy MI, Hattersley AT. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007 Jun 1;316(5829):1336-41. Abstract

View all comments by Todd Lencz
View all comments by Anil Malhotra

Related News: Exome Sequencing Hints at Prenatal Genes in Schizophrenia

Comment by:  Sven CichonMarcella RietschelMarkus M. Nöthen
Submitted 5 October 2012
Posted 5 October 2012

The new exome sequencing study by Xu et al. confirms previous results by the same research group (Xu et al., 2011) and by an independent group (Girard et al., 2011) that a significantly higher frequency of protein-altering de novo single nucleotide variants (SNVs) and in/dels is found in sporadic patients with schizophrenia. It is certainly reassuring that this observation has now been confirmed in an independent and considerably larger sample (134 patient-parent trios and 34 control-parent trios).

A closer look also reveals differences between this study and the study by Girard et al.: Xu et al. do not find a significantly higher overall de novo mutation rate per base per generation when comparing schizophrenia and control trios (1.73 x 10-08 vs. 1.28 x 10-08). In contrast, the Girard study found 2.59 x 10-08 de novo mutations in schizophrenia trios as opposed to the 1.1 x 10-08 events reported in the general population by the 1000 Genomes Project. The larger sample size in the new study by Xu et al., however, suggests that their estimation of the de novo mutation rates may be more precise now.

What eventually seems to count is the quality of the de novo mutations in the sporadic schizophrenia patients. The function of the genes hit by the non-synonymous/deleterious (as defined by in-silico scores) mutations is diverse and shows similarity with functions reported for common risk genes for schizophrenia identified by GWAS. Interestingly, there is an overrepresentation of genes that are predominantly expressed during embryogenesis, strongly highlighting a possible effect of neurodevelopmental disturbances in the etiology of schizophrenia (and nicely supporting what has already been concluded from GWAS).

It would probably be very interesting to estimate the penetrance of such de novo mutations to get a feeling for their individual impact on the development of the disease. In the absence of a reasonable number of individuals with the same mutation, however, this will be a difficult task.

Another aspect that is missing in the current paper, but is accessible to investigation, is the frequency/quality of de novo mutations in trios with a family history of schizophrenia and comparison to the figures seen in the sporadic trios. That might (or might not) support the authors’ conclusion that de novo events play a strong role in sporadic cases (and not in familial cases).

References:

Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, Gogos JA, Karayiorgou M. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet . 2011 Sep ; 43(9):864-8. Abstract

Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, Dionne-Laporte A, Spiegelman D, Henrion E, Diallo O, Thibodeau P, Bachand I, Bao JY, Tong AH, Lin CH, Millet B, Jaafari N, Joober R, Dion PA, Lok S, Krebs MO, Rouleau GA. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet . 2011 Sep ; 43(9):860-3. Abstract

View all comments by Sven Cichon
View all comments by Marcella Rietschel
View all comments by Markus M. Nöthen

Related News: Exome Sequencing Hints at Prenatal Genes in Schizophrenia

Comment by:  Patrick Sullivan, SRF Advisor
Submitted 5 October 2012
Posted 5 October 2012

This paper by the productive group at Columbia increases our knowledge of the role of rare exon mutations in schizophrenia. The authors applied exome sequencing—a newish high-throughput sequencing technology—to trios consisting of both parents plus an offspring with schizophrenia. The authors focused on a subset of the genome (the “exome,” genetic regions believed to code for protein) on a subset of genetic variants (SNPs and insertion/deletion variants) of predicted functional significance, and on one type of inheritance (“de novo“ mutations, those absent in both parents and present in the offspring with schizophrenia).

The sample sizes are the largest yet reported for schizophrenia—231 affected trios and 34 controls. About 28 percent of these samples were reported in 2011 (Xu et al., 2011). A recent schizophrenia sequencing study (N = 166) from the Duke group was unrevealing (Need et al., 2012). The numbers in the Xu, 2012 paper are small compared to the three Nature trio studies for autism (see SRF related news story), an approximately threefold larger trio study for schizophrenia (in preparation), a case-control exome sequencing study for schizophrenia (total N ~5,000, in preparation), and a case-control exome chip study for schizophrenia (total N ~11,000, in preparation).

The authors reported:

more mutations with older fathers, as has been reported before (see SRF related news story). Note that advanced paternal age is an established risk factor for schizophrenia.

more de novo/predicted functional/exonic mutations in schizophrenia than in controls. However, the difference was slight, one-sided P = 0.03. One can quibble with the use of a one-tailed test (should never be used, in my opinion), but it is difficult to interpret this result unless paternal age is included as a covariate in this critical test.

an impressive set of bioinformatic and integrative analyses—see the paper for the large amount of work they did.

as might be predicted given the small sample size and the rarity of these sorts of mutations, there was no statistically significant pile-up of variants in specific genes. Hence, to my reading, the authors do not compellingly implicate any specific genes in the pathophysiology of schizophrenia. This conclusion is consistent with Need et al., 2012, and I note that the autism work implicated only a few genes (e.g., CHD8 and KATNAL2).

Note that the authors would disagree with the above, as they chose to focus on a set of genes that they thought stood out (reporting an aggregate P of 0.002), and the last third of the paper focuses on these genes. However, the human genetics community now insists on two critical points for implicating specific genes in associations with a disorder. The first is statistical significance, and the critical P value for an exome sequencing study is on the order of 1E-6. The second is replication. In my view, neither of these standards are achieved. However, their observations are intriguing, and may well eventually move us forward.

The key observation in this paper is the increased rate of de novo variation in schizophrenia cases. Is the increased rate indeed part of an etiological process? In other words, older fathers have an increased chance of exonic mutations, and these, in turn, increase risk for schizophrenia? Or are these merely hitch-hikers of no particularly biological import?

A major issue with exome studies is that there are so many predicted functional variants in apparently normal people. We all carry on the order of 100 exonic variants of predicted functional consequences with on the order of 20 genes that are probable knockouts. If part of the risk for schizophrenia indeed resides in the exome, very large studies will be required to identify such loci confidently. Moreover, published work on autism and unpublished work for type 2 diabetes, coronary artery disease, and schizophrenia suggest that this will require very large sample sizes, on the order of 100 times more than reported here. And, it is possible that the exome is not all that important for schizophrenia.

References:

Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, Gogos JA, Karayiorgou M. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet . 2011 Sep ; 43(9):864-8. Abstract

Need AC, McEvoy JP, Gennarelli M, Heinzen EL, Ge D, Maia JM, Shianna KV, He M, Cirulli ET, Gumbs CE, Zhao Q, Campbell CR, Hong L, Rosenquist P, Putkonen A, Hallikainen T, Repo-Tiihonen E, Tiihonen J, Levy DL, Meltzer HY, Goldstein DB. Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia. Am J Hum Genet . 2012 Aug 10 ; 91(2):303-12. Abstract

View all comments by Patrick Sullivan

Related News: New Exome Evidence Points to Old Suspect in Schizophrenia

Comment by:  Francis McMahon, SRF Advisor
Submitted 23 January 2014
Posted 28 January 2014

I think these studies do represent real progress. Finding genetic support for particular pathways provides unique evidence for a causative role of these pathways in disease. Why didn't the case-control study point to individual genes? Disorders such as schizophrenia may be more like a plane crash than a typical inherited disease: Since many things can go wrong, each crash is different, but damage to key systems is very likely to lead to a bad outcome. The finding in Fromer et al. that there are 18 genes with recurrent deleterious de novo events should allow scientists to focus on these genes as especially important. The overlaps with autism and intellectual disability are interesting, though not entirely unexpected. Will we also see gene overlaps with illnesses such as bipolar disorder? It wouldn't surprise me if some of the same genes are involved, but with fewer, less deleterious hits.

View all comments by Francis McMahon