Schizophrenia Research Forum - A Catalyst for Creative Thinking

Nature Explores the Social Side of Neuroscience

16 April 2012. A Nature Neuroscience special issue review, which appeared online April 15, highlights the field of social neuroscience, touching on issues ranging from empathy to neuroplasticity to social norms. Of special interest to SRF readers, Andreas Meyer-Lindenberg and Heike Tost, of the University of Heidelberg in Mannheim, Germany, discuss the neural mechanisms underlying social risk factors for psychiatric illnesses in a perspective article.

Social risk for mental and physical disorders
In the first piece of the series, Meyer-Lindenberg and Tost detail the evidence implicating social factors such as urban upbringing and migration in risk for schizophrenia (see SRF related news story), and outline recent neuroimaging studies implicating anterior cingulate and medial prefrontal cortex circuitry in that risk. Of course, environmental risk factors alone aren’t the culprit, and the authors also describe a role for variants in genes such as calcium channel subunit CACNA1C in social behaviors like emotion regulation. In fact, a schizophrenia risk variant in CACNA1C has been linked to altered anterior cingulate cortex activity and social behavioral deficits (Erk et al., 2010), suggesting that social environmental risk factors may interact with genetic risk variants to alter brain function.

In addition to influencing risk for schizophrenia, social impairments are a hallmark feature of the illness, and also one of the best predictors of long-term functional outcome (Penn et al., 2008). In the words of the authors, “everyday social interactions are both actor and stage for mental illness.”

One’s social environment doesn’t singularly affect mental health—physical health can be regulated by social relationships, too. In another perspective article, University of California, Los Angeles, researchers Naomi Eisenberger and Steve Cole examine the neural mechanisms underlying this link between social environment and somatic health. The authors suggest that the same threat/harm circuitry that reacts when survival is at risk is activated in adverse social situations, resulting in similar health effects. Conversely, the safety/reward circuitry that responds to pro-survival situations is also activated in positive social environments. As noted by Eisenberger and Cole, “social connections reach deep into the body to regulate some of our most fundamentally internal molecular processes.”

Although there is a strong case linking adverse social factors with worse health, the social brain is also a plastic one, and a review article by Richard Davidson of the University of Wisconsin, Madison, and Bruce McEwen of New York’s Rockefeller University provides hope for future interventions. The researchers describe how both chronic and acute social stressors can affect brain plasticity, inducing changes in dendritic spines of the amygdala, hippocampus, and prefrontal cortex. Recent studies have described beneficial effects of pro-social interventions such as meditation on both brain function and behavior, suggesting that training on such practices may lead to improved social outcomes.

A mixed bag of other social neuroscience topics
A fourth piece in the series, a perspective article authored by Jamil Zaki of Harvard University and Kevin Ochsner of Columbia University in New York, features a critical discussion of the current state of neural mechanisms underlying empathy. The authors detail the progress in the field, namely, the identification of empathy subsystems, and also describe the limitations of research on empathy. They end on a hopeful note, praising recent trends of using more naturalistic social cognitive paradigms, the development of stronger links between neural correlates and behavior, and the use of a wide range of methodologies.

Another perspective piece authored by Cade McCall and Tania Singer of the Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig, Germany, describes how animal and human research has educated neuroendocrinological hypotheses of social behaviors. McCall and Singer review findings implicating several major neuropeptides and steroid hormones in processes such as affiliation and aggression. Next, they detail how animal research can spawn new directions in human neuroendocrinology research, and conclude with recommendations for future human studies.

In the final piece of the special issue, Joshua Buckholtz of Harvard University and René Marois of Vanderbilt University, Nashville, Tennessee, provide a commentary on the neural underpinnings of social norms, a construct that underlies the collective collaboration, or “ultra-sociality,” of human culture. The authors describe potential mechanisms underlying the acquisition and enforcement of social norms, arguing that they seem to be mediated by simple cognitive processes such as value learning rather than more complicated cognitive constructs. Implicated brain regions include the amygdala and various subregions of the prefrontal cortex.—Allison A. Curley.

References:
Buckholtz JW and Marois R. The roots of modern justice: cognitive and neural foundations of social norms and their enforcement. Nat Neurosci. 2012. Abstract

Davidson RJ and McEwen BS. Social influences on neuroplasticity: stress and interventions to promote well-being. Nat Neurosci. 2012. Abstract

Eisenberger NI and Cole SW. Social neuroscience and health: neurophysiological mechanisms linking social ties with physical health. Nat Neurosci. 2012. Abstract

McCall C and Singer T. The animal and human neuroendocrinology of social cognition, motivation, and behavior. Nat Neurosci. 2012. Abstract

Meyer-Lindenberg A and Tost H. Neural mechanisms of social risk for psychiatric disorders. Nat Neurosci. 2012. Abstract

Zaki J and Ochsner K. The neuroscience of empathy: progress, pitfalls and promise. Nat Neurosci. 2012. Abstract

Comments on Related News


Related News: A Tale of Two City Exposures and the Brain

Comment by:  John McGrath, SRF Advisor
Submitted 22 June 2011
Posted 22 June 2011

The findings from Lederbogen et al. are very thought provoking. The dissociation between the fMRI correlates of current versus early life urbanicity is unexpected. The authors have replicated their finding in an independent sample, reducing the chance that the finding was a type 1 error.

It is heartening to see important clues from epidemiology influencing fMRI research design. With respect to schizophrenia, the findings provide much-needed clues to the neurobiological correlates of urban birth (Pedersen and Mortensen, 2001; Pedersen and Mortensen, 2006; Pedersen and Mortensen, 2006). Somewhat to the embarrassment of the epidemiology research community, the link between urban birth and risk of schizophrenia has been an area of research where the strength of the empirical evidence has been much stronger than hypotheses proposed to explain the findings (McGrath and Scott, 2006; March et al., 2008). The new findings should trigger more focused research exploring the fMRI correlates in urban- versus rural-born individuals with schizophrenia.

References:

March D, Hatch SL, Morgan C, Kirkbride JB, Bresnahan M, Fearon P, Susser E. Psychosis and place. Epidemiol Rev . 2008 Jan 1 ; 30():84-100. Abstract

McGrath J, Scott J. Urban birth and risk of schizophrenia: a worrying example of epidemiology where the data are stronger than the hypotheses. Epidemiol Psichiatr Soc . 2006 Oct-Dec ; 15(4):243-6. Abstract

Pedersen CB, Mortensen PB. Evidence of a dose-response relationship between urbanicity during upbringing and schizophrenia risk. Arch Gen Psychiatry . 2001 Nov 1 ; 58(11):1039-46. Abstract

Pedersen CB, Mortensen PB. Are the cause(s) responsible for urban-rural differences in schizophrenia risk rooted in families or in individuals? Am J Epidemiol . 2006 Jun 1 ; 163(11):971-8. Abstract

Pedersen CB, Mortensen PB. Urbanization and traffic related exposures as risk factors for schizophrenia. BMC Psychiatry . 2006 Jan 1 ; 6():2. Abstract

View all comments by John McGrath

Related News: A Tale of Two City Exposures and the Brain

Comment by:  Elizabeth Cantor-Graae
Submitted 23 June 2011
Posted 23 June 2011

The study by Lederbogen et al. linking neural processes to epidemiology opens up an exciting avenue of inquiry, It suggests that exposure to urban upbringing could modify brain activity. Whether that could lead to schizophrenia per se remains to be seen.

Still, one might want to keep in mind that there is no evidence that urban-rural differences in schizophrenia risk are causally related to individual exposure. Pedersen and Mortensen (2006) showed that the association between urban upbringing and the development of schizophrenia is attributable both to familial-level factors as well as individual-level factors. Thus, the link between urbanicity and schizophrenia may be mediated by genetic factors, and if so, the social stressors shown by Lederbogen may in turn be related to those same genes.

Although it might be tempting to speculate whether Lederbogen’s findings have implications for migrant research, the “migrant effect” does not seem neatly explained by urban birth/upbringing. To the contrary, our findings show that the dose-response relationship between urbanization and schizophrenia (Pedersen and Mortensen, 2001) could be replicated only among persons born in Denmark whose parents had both been born in Denmark, and not in second-generation immigrants (Cantor-Graae and Pederson, 2007). Second-generation immigrants had an increased risk of developing schizophrenia independently of urban birth/upbringing (Cantor-Graae and Pedersen, 2007).

References:

Pedersen CB, Mortensen PB. Are the cause(s) responsible for urban-rural differences in schizophrenia risk rooted in families or in individuals? Am J Epidemiol. 2006; 163:971-8. Abstract

Pedersen CB, Mortensen PB. Evidence of a dose-response relationship between urbanicity during upbringing and schizophrenia risk. Arch Gen Psychiatry. 2001; 58:1039-46. Abstract

Cantor-Graae E, Pedersen CB. Risk of schizophrenia in second-generation immigrants: a Danish population-based cohort study. Psychol Med. 2007; 37:485-94. Abstract

View all comments by Elizabeth Cantor-Graae

Related News: A Tale of Two City Exposures and the Brain

Comment by:  James Kirkbride
Submitted 27 June 2011
Posted 27 June 2011

Mannheim, Germany, has long played a pivotal role in unearthing links between the environment and schizophrenia (Hafner et al., 1969). Using administrative incidence data from Mannheim in 1965, Hafner and colleagues were amongst the first groups to independently verify Faris and Dunham’s seminal work from Chicago in the 1920s, which showed that hospitalized admission rates of schizophrenia were higher in progressively more urban areas of the city (Faris and Dunham, 1939). Now, almost 50 years later, Mannheim’s historical pedigree in this area looks set to endure, following the publication of the landmark study by Lederbogen et al. in Nature, which reported for the first time associations of urban living and upbringing with increased brain activity amongst healthy volunteers in two brain regions involved in determining environmental threat and processing stress responses.

Tantalizingly, their work bridges epidemiology and neuroscience, and provides some of the first empirical data to directly implicate functional neural alterations in stress processing associated with living in urban environments. One important step will now be to discover whether such neural changes (following exposure to urban environments) are associated with clinical phenotypes, such as schizophrenia. This would support long-speculated paradigms of social stress (Selten and Cantor-Graae, 2005) as an important mechanism in a causal pathway between the environment and psychosis, although alternative environmental exposures in urban areas, including viral hypotheses and vitamin D, should not yet be excluded.

The work by Lederbogen et al. opens many avenues for possible study, including replication of their findings in clinical samples (via case-control designs) and using population-based rather than convenience samples. One of the greatest challenges in the social epidemiology of psychiatric disorders is to identify the specific suite of factors that underpin associations between the urban environment and the risk of clinical disorder. While Lederbogen et al. did not provide specific enlightenment on what these factors might be, their work also informs this search, because it suggests that focusing on factors likely to induce (or protect against) social stress would be potentially fruitful. To this end, their work should pave the way for mimetic studies, in both non-clinical and clinical populations, to investigate neural processing in relation to candidate social risk factors for psychiatric illness that were implicated in previous epidemiological studies (Cantor-Graae and Selten, 2005; March et al., 2008). These candidates may include migration or minority group membership (Coid et al., 2008), childhood traumas and other major life events (Kendler et al., 1992; Morgan et al., 2007), neighborhood socioeconomic deprivation (Croudace et al., 2000), income inequality (Boydell et al., 2004), and both individual-level social networks and neighborhood-level social cohesion and ethnic density (Kirkbride et al., 2008); some of these factors may also mitigate the effects of social stress.

The interface between social epidemiology and social neuroscience will also potentially provide new avenues by which to develop public health interventions. Presently, universal prevention strategies that focus on community-based interventions to prevent mental illness are not readily viable (Kirkbride et al., 2010), given both the absolute rarity of psychotic disorder and the relative ubiquity of broadly defined exposures such as urban living (many people live in urban environments, but only a handful of them will ever develop a psychotic illness). However, social neuroscience breakthroughs like those reported here may increase the viability of community-based public health initiatives by making it possible to move the focus of the intervention from preventing the clinical phenotype to preventing the abnormal neural changes associated with social-stress processing. Importantly, such strategies must also consider the possible benefits of enhanced social-stress processing in urban environments, which might be an important adaptation to more threatening environments. Because social stress may be associated with a range of neuropsychiatric and somatic disorders, public health strategies that target reductions in social stress rather than any single disorder may lead to significant improvements in population health across a range of morbidities. Such strategies, if justifiable, may also be cost effective, since a single intervention may prevent a range of disorders.

References:

Hafner H, Reimann H, Immich H, Martini H. Inzidenz seelischer Erkrankungen in Mannheim 1965. Soc Psychiatr. 1969;4:127-35.

Faris REL, Dunham HW. Mental disorders in urban areas. Chicago: University of Chicago Press; 1939.

Selten JP, Cantor-Graae E. Social defeat: risk factor for schizophrenia? Br J Psychiatry. 2005 August 1;187(2):101-2. Abstract

Cantor-Graae E, Selten J-P. Schizophrenia and Migration: A Meta-Analysis and Review. Am J Psychiatry. 2005 January 1;162(1):12-24. Abstract

March D, Hatch SL, Morgan C, Kirkbride JB, Bresnahan M, Fearon P, Susser E. Psychosis and Place. Epidemiol Rev. 2008;30:84-100. Abstract

Coid JW, Kirkbride JB, Barker D, Cowden F, Stamps R, Yang M, Jones PB. Raised incidence rates of all psychoses among migrant groups: findings from the East London first episode psychosis study. Arch Gen Psychiatry. 2008;65(11):1250-8. Abstract

Kendler KS, Neale MC, Kessler RC, Heath AC, Eaves LJ. Childhood parental loss and adult psychopathology in women. A twin study perspective. Arch Gen Psychiatry. 1992 Feb;49(2):109-16. Abstract

Morgan C, Kirkbride JB, Leff J, Craig T, Hutchinson G, McKenzie K, Morgan K, Dazzan P, Doody GA, Jones P, Murray R, Fearon P. Parental separation, loss and psychosis in different ethnic groups: a case-control study. Psychol Med. 2007;37(4):495-503. Abstract

Croudace TJ, Kayne R, Jones PB, Harrison GL. Non-linear relationship between an index of social deprivation, psychiatric admission prevalence and the incidence of psychosis. Psychol Med. 2000 Jan;30(1):177-85. Abstract

Boydell J, van Os J, McKenzie K, Murray RM. The association of inequality with the incidence of schizophrenia--an ecological study. Soc Psychiatry Psychiatr Epidemiol. 2004 Aug;39(8):597-9. Abstract

Kirkbride J, Boydell J, Ploubidis G, Morgan C, Dazzan P, McKenzie K, Murray RM, Jones PB. Testing the association between the incidence of schizophrenia and social capital in an urban area. Psychol Med. 2008;38(8):1083-94. Abstract

Kirkbride JB, Coid JW, Morgan C, Fearon P, Dazzan P, Yang M, Lloyd T, Harrison GL, Murray RM, Jones PB. Translating the epidemiology of psychosis into public mental health: evidence, challenges and future prospects. J Public Ment Health. 2010;9(2):4-14. Abstract

View all comments by James Kirkbride

Related News: A Tale of Two City Exposures and the Brain

Comment by:  Wim Veling
Submitted 5 July 2011
Posted 5 July 2011

This publication is interesting and important, as it is one of the first efforts to connect epidemiological findings to neuroscience. Both fields of research have made great progress over the last decades, but results were limited because epidemiologists and neuroscientists rarely joined forces.

Several risk factors that implicate preconceptional, prenatal, or early childhood exposures have been consistently related to schizophrenia in epidemiological studies, including paternal age at conception, early prenatal famine, urban birth, childhood trauma, and migration (Van Os et al., 2010). While some of these associations are likely to be causal, the mechanisms by which they are linked to schizophrenia are still largely unknown. A next phase of studies is required, the methods and measures of which link social environment to psychosis, brain function, and genes. The study by Lederbogen and colleagues is a fine example of such an innovative research design. Their findings are consistent with hypotheses of social stress mediating the relationship between environmental factors and schizophrenia. It stimulates further research in this direction.

Two key issues need to be addressed. First, measures of social pathways should be refined (March et al., 2008). Which aspects of the daily social environment contribute to the onset of psychotic symptoms, how do these symptoms develop, and which individual characteristics moderate this outcome? It is extremely difficult to investigate daily social environments, because they are highly complex, cannot be controlled, are never exactly the same, and are strongly influenced by the individual’s behavior. Arguably, the only way to test mechanisms of psychotic responses to the social environment, and the moderators thereof, is to randomize individuals to controlled experimental social risk environments. Virtual reality (VR) technology, that is, substituting sense data from the natural world with sense data about an imaginary world that change in response to the user’s actions in an interactive three-dimensional virtual world, offers the possibility to do so. Freeman pioneered VR in psychosis research, investigating safety and feasibility (Fornells-Ambrojo et al., 2008; Freeman, 2008); however, there are no studies investigating mechanisms of risk environments. Our group recently found in a small pilot study that virtual environments with high population density or low ethnic density appear to elicit more physiological and subjective stress, as well as higher level of paranoia towards avatars (Brinkman et al., 2011). Larger studies and more experiments are needed.

Second, how are early social experiences translated to brain dysfunction? Another recent development has been in the field of epigenetics. Epigenetic mechanisms may mediate the effects of environmental risk factors, as the epigenetic status of the genome can be modified in response to the environment during embryonic growth, and probably also in the early years of life (Heijmans et al., 2009). Preliminary evidence suggests that epigenetic differences may be related to schizophrenia (Mill et al., 2008), but these epigenetic studies have not yet included environmental exposures. Epidemiologic studies may be a tool to detect epigenetic mechanisms in schizophrenia. Environmental exposures such as prenatal famine or migration may be used, as these exposures have been related to schizophrenia, can be measured with sufficient precision, offer homogeneously exposed populations for study, and had plausible biological pathways suggested for them (Veling et al. Environmental studies as a tool for detecting epigenetic mechanisms in schizophrenia. In: Petronis A, Mill J, editors. Epigenetics and Human Health: Brain, Behavior and Epigenetics. Heidelberg: Springer; 2011). Comparing the epigenome of exposed and unexposed schizophrenia cases and controls may help us to understand how gene expression affects disease risk.

As far fetched and futuristic as these research designs perhaps may seem, the publication of Lederbogen and colleagues shows that novel approaches can be very fruitful. If we improve interdisciplinary collaboration and use new technology, we may advance from associations to understanding in etiologic schizophrenia research.

References:

Van Os J, Kenis G, Rutten BPF. The environment and schizophrenia. Nature. 2010;468:203-12. Abstract

March D, Hatch SL, Morgan C, Kirkbride JB, Bresnahan M, Fearon P, et al. Psychosis and place. Epidemiological Reviews. 2008;30:84-100. Abstract

Fornells-Ambrojo M, Barker C, Swapp D, Slater M, Antley A, Freeman D. Virtual Reality and persecutory delusions: safety and feasibility. Schizophrenia Research. 2008;104:228-36. Abstract

Freeman D. Studying and treating schizophrenia using Virtual Reality: a new paradigm. Schizophrenia Bulletin. 2008;34:605-10. Abstract

Brinkman WP, Veling W, Dorrestijn E, Sandino G, Vakili V, Van der Gaag M. Virtual reality to study responses to social environmental stressors in individuals with and without psychosis. Studies in Health Technology and Informatics. 2011;167:86-91. Abstract

Heijmans BT, Tobi EW, Lumey LH, Slagboom PE. The epigenome; archive of the prenatal environment. Epigenetics. 2009;4:526-31. Abstract

Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. American Journal of Human Genetics. 2008;82:696-711. Abstract

Veling W, Lumey LH, Heijmans BT, Susser E. Environmental studies as a tool for detecting epigenetic mechanisms in schizophrenia. In: Petronis A, Mill J, editors. Epigenetics and Human Health: Brain, Behavior and Epigenetics. Heidelberg: Springer; 2011.

View all comments by Wim Veling

Related News: A Tale of Two City Exposures and the Brain

Comment by:  Dana March
Submitted 7 July 2011
Posted 7 July 2011

The paper by Lederbogen and colleagues represents a critical step in elucidating the mechanisms underlying the consistent association between urban upbringing and adult schizophrenia. As John McGrath rightly points out, the urbanicity findings have long been in search of hypotheses. We understand little about what the effects of place on psychosis might actually be (March et al., 2008). What it is about place that matters for neurodevelopment and for schizophrenia in particular can be greatly enriched by a translational approach linking epidemiological findings to clinical and experimental science (Weissman et al., 2011), which will in turn help us formulate and refine our hypotheses about why place matters. Lederbogen and colleagues have opened the door in Mannheim. Where we go from here will require creativity, persistence, and collaboration.

References:

March D, Hatch SL, Morgan C, Kirkbride JB, Bresnahan M, Fearon P, Susser E. Psychosis and place. Epidemiol Rev . 2008 Jan 1 ; 30:84-100. Abstract

Weissman MM, Brown AS, Talati A. Translational epidemiology in psychiatry: linking population to clinical and basic sciences. Arch Gen Psychiatry . 2011 Jun 1 ; 68(6):600-8. Abstract

View all comments by Dana March