Schizophrenia Research Forum - A Catalyst for Creative Thinking

GWAS Goes Bigger: Large Sample Sizes Uncover New Risk Loci, Additional Overlap in Schizophrenia and Bipolar Disorder

20 September 2011. The results of the largest GWAS on schizophrenia and bipolar disorder to date were published online September 18 in Nature Genetics. From the Psychiatric Genome-Wide Consortium (PGC), each study reaches combined sample sizes in the tens of thousands, and delivers multiple genome-wide significant hits to the complicated realm of psychiatric genetics.

The schizophrenia study replicates two known risk loci and uncovers five new ones, including an intriguing hit involving the microRNA (miRNA) MIR137, a player in neural development. The new bipolar disorder GWAS replicates previous findings of CACNA1C, and reveals a new risk locus on chromosome 11 near ODZ4, a gene that encodes an extracellular matrix protein involved in signal transduction.

In addition to these main results, both studies also analyzed combined samples of individuals diagnosed with schizophrenia and those with bipolar disorder, and provide further evidence for the view that there is significant overlap in the genetic bases of these illnesses (Craddock and Owen, 2010; SRF related news story).

Pumping up the volume
In the summer of 2009, three GWAS of schizophrenia and bipolar disorder, including the largest such study conducted up to that time, were published simultaneously in Nature to great fanfare (International Schizophrenia Consortium et al., 2009; Shi et al., 2009; Stefansson et al., 2009; see also SRF related news story). A meta-analysis of all three datasets (Shi et al., 2009) in one of the papers provided converging evidence of associations (albeit none with genomewide significance) between schizophrenia and gene variations in the major histocompatibility complex (MHC), which had previously been seen in linkage (Schwab et al., 2002) and candidate-gene (Lewis et al., 2003) studies. Otherwise, the work revealed numerous associations with weak effect and few replications, pointing toward a polygenic etiology for schizophrenia and bipolar disorder—an overall finding that scientists involved in the studies predicted would be corroborated and strengthened with larger sample sizes.

The schizophrenia GWAS published this week (Schizophrenia Psychiatric Genome-Wide Association Study Consortium, 2011) provides one of the first tests of this prediction. Members of the PGC completed a mega-analysis of raw data from 17 previous GWAS, including 13 from the International Schizophrenia Consortium and SGENE Consortium, for a combined total sample size of 29,839 individuals. In this first stage, 136 associations reached genomewide significance, most of which were in a 5.5 Mb region of the MHC.

The group also found significant signals at two previously reported sites—TCF4 on chromosome 18 and near NRGN (albeit a different NRGN variant than had been seen previously) on chromosome 11, and two entirely new loci at 10q24.33 (in NT5C2) and 8q21.3 (near MMP16).

Eighty-one SNPs surpassing a significance criterion (P <2 x 10-5) were examined in a second replication stage utilizing an independent combined sample of 21,397 cases and 8,442 controls, and the same direction of effect was observed for 49 of 52 SNPs identified in stage 1. Finally, the stage 1 and 2 samples were combined for a dataset totaling 51,695 individuals, comprising 17,836 cases and 33,859 controls. In this analysis, seven loci yielded signals with genomewide significance. Two of these loci—a stretch at 6p21.32-p22.1 in TRIM26 and at 18q21.2, where two separate SNPs were found in TCF4 and near CCDC68—had been previously identified, but five—at 1p21.3, 2q32.3, 8p23.2, 8q21.3, and 10q24.32-q24.33—are new.

The newly identified SNP on chromosome 1 (rs1625579), which falls within an intron of the primary transcript of MIR137, showed the strongest association of all in the combined sample (P = 1.62 x 10-11). This miRNA is known to regulate neural development and adult neurogenesis via many gene targets (e.g., Smrt et al., 2010), and it is among the miRNAs implicated in recent “genetic imaging” studies of schizophrenia (Potkin et al., 2010). Interestingly, in stage 1 of the study, SNPs were also found in numerous MIR137 gene targets, which corroborates the idea that misregulation of MIR137 represents a new etiologic mechanism in schizophrenia.

Three loci that surfaced during stage 1—ANK3, CACN1AC, and ITIH3-ITIH4—have been associated with bipolar disorder. To ascertain whether these genes confer risk for both schizophrenia and bipolar disorder, the authors analyzed a combined sample of 16,374 patients with schizophrenia, schizoaffective disorder, or bipolar disorder and 14,044 controls. All three regions achieved genomewide significance in this analysis, lending further support to the idea that there is shared genetic risk among these disorders.

A new SNP, and more overlap
In another three-stage study by PGC members on bipolar disorder (Psychiatric GWAS Consortium Bipolar Working Group, 2011), 34 SNPs identified in a discovery phase were narrowed to 18 in a replication study utilizing independent cases. Then, combining the discovery and replication samples for a total of 11,974 cases and 51,792 controls, they turned up significantly associated SNPs in the CACN1AC region of chromosome 12 (rs476913) and in an intron of ODZ4, a human homologue of the Drosophila pair-rule gene ten-m. ODZ4 encodes extracellular matrix glycoproteins known as tenascins that are involved in signal transduction.

A parallel study examined a combined sample of schizophrenia and bipolar disorder patients independent of that discussed above, which replicated that study’s association of CACN1AC and also found a significant signal at a multigenic locus in the NEK4-ITIH1-ITIH3-ITIH4 region of chromosome 3 with both schizophrenia and bipolar disorder. That this mixing together of bipolar and schizophrenia cases in both studies results in clear hits argues that signals can be discerned even when dealing with highly heterogeneous psychiatric disorders—as long as the sample size is large enough.

Overall, the multiple hits of small effect found in these studies fit with a polygenic model of schizophrenia and bipolar disorder. Though even larger GWAS will be needed to discover a fuller complement of risk variants, chasing down the biology of these variants will be essential to understanding their contributions to psychiatric disease.—Pete Farley.

References:
The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium, Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, Lin DY, Duan J, Ophoff RA, Andreassen OA, Scolnick E, Cichon S, St Clair D, Corvin A, Gurling H, Werge T, Rujescu D, Blackwood DH, Pato CN, Malhotra AK, Purcell S, Dudbridge F, Neale BM, Rossin L, Visscher PM, Posthuma D, Ruderfer DM, Fanous A, Stefansson H, Steinberg S, Mowry BJ, Golimbet V, De Hert M, Jönsson EG, Bitter I, Pietiläinen OP, Collier DA, Tosato S, Agartz I, Albus M, Alexander M, Amdur RL, Amin F, Bass N, Bergen SE, Black DW, Børglum AD, Brown MA, Bruggeman R, Buccola NG, Byerley WF, Cahn W, Cantor RM, Carr VJ, Catts SV, Choudhury K, Cloninger CR, Cormican P, Craddock N, Danoy PA, Datta S, de Haan L, Demontis D, Dikeos D, Djurovic S, Donnelly P, Donohoe G, Duong L, Dwyer S, Fink-Jensen A, Freedman R, Freimer NB, Friedl M, Georgieva L, Giegling I, Gill M, Glenthøj B, Godard S, Hamshere M, Hansen M, Hansen T, Hartmann AM, Henskens FA, Hougaard DM, Hultman CM, Ingason A, Jablensky AV, Jakobsen KD, Jay M, Jürgens G, Kahn RS, Keller MC, Kenis G, Kenny E, Kim Y, Kirov GK, Konnerth H, Konte B, Krabbendam L, Krasucki R, Lasseter VK, Laurent C, Lawrence J, Lencz T, Lerer FB, Liang KY, Lichtenstein P, Lieberman JA, Linszen DH, Lönnqvist J, Loughland CM, Maclean AW, Maher BS, Maier W, Mallet J, Malloy P, Mattheisen M, Mattingsdal M, McGhee KA, McGrath JJ, McIntosh A, McLean DE, McQuillin A, Melle I, Michie PT, Milanova V, Morris DW, Mors O, Mortensen PB, Moskvina V, Muglia P, Myin-Germeys I, Nertney DA, Nestadt G, Nielsen J, Nikolov I, Nordentoft M, Norton N, Nöthen MM, O'Dushlaine CT, Olincy A, Olsen L, O'Neill FA, Orntoft TF, Owen MJ, Pantelis C, Papadimitriou G, Pato MT, Peltonen L, Petursson H, Pickard B, Pimm J, Pulver AE, Puri V, Quested D, Quinn EM, Rasmussen HB, Réthelyi JM, Ribble R, Rietschel M, Riley BP, Ruggeri M, Schall U, Schulze TG, Schwab SG, Scott RJ, Shi J, Sigurdsson E, Silverman JM, Spencer CC, Stefansson K, Strange A, Strengman E, Stroup TS, Suvisaari J, Terenius L, Thirumalai S, Thygesen JH, Timm S, Toncheva D, van den Oord E, van Os J, van Winkel R, Veldink J, Walsh D, Wang AG, Wiersma D, Wildenauer DB, Williams HJ, Williams NM, Wormley B, Zammit S, Sullivan PF, O'Donovan MC, Daly MJ, Gejman PV. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011 Sep 18. Abstract

Psychiatric GWAS Consortium Bipolar Disorder Working Group, Sklar P, Ripke S, Scott LJ, Andreassen OA, Cichon S, Craddock N, Edenberg HJ, Nurnberger JI Jr, Rietschel M, Blackwood D, Corvin A, Flickinger M, Guan W, Mattingsdal M, McQuillin A, Kwan P, Wienker TF, Daly M, Dudbridge F, Holmans PA, Lin D, Burmeister M, Greenwood TA, Hamshere ML, Muglia P, Smith EN, Zandi PP, Nievergelt CM, McKinney R, Shilling PD, Schork NJ, Bloss CS, Foroud T, Koller DL, Gershon ES, Liu C, Badner JA, Scheftner WA, Lawson WB, Nwulia EA, Hipolito M, Coryell W, Rice J, Byerley W, McMahon FJ, Schulze TG, Berrettini W, Lohoff FW, Potash JB, Mahon PB, McInnis MG, Zöllner S, Zhang P, Craig DW, Szelinger S, Barrett TB, Breuer R, Meier S, Strohmaier J, Witt SH, Tozzi F, Farmer A, McGuffin P, Strauss J, Xu W, Kennedy JL, Vincent JB, Matthews K, Day R, Ferreira MA, O'Dushlaine C, Perlis R, Raychaudhuri S, Ruderfer D, Hyoun PL, Smoller JW, Li J, Absher D, Thompson RC, Meng FG, Schatzberg AF, Bunney WE, Barchas JD, Jones EG, Watson SJ, Myers RM, Akil H, Boehnke M, Chambert K, Moran J, Scolnick E, Djurovic S, Melle I, Morken G, Gill M, Morris D, Quinn E, Mühleisen TW, Degenhardt FA, Mattheisen M, Schumacher J, Maier W, Steffens M, Propping P, Nöthen MM, Anjorin A, Bass N, Gurling H, Kandaswamy R, Lawrence J, McGhee K, McIntosh A, McLean AW, Muir WJ, Pickard BS, Breen G, St Clair D, Caesar S, Gordon-Smith K, Jones L, Fraser C, Green EK, Grozeva D, Jones IR, Kirov G, Moskvina V, Nikolov I, O'Donovan MC, Owen MJ, Collier DA, Elkin A, Williamson R, Young AH, Ferrier IN, Stefansson K, Stefansson H, Thornorgeirsson T, Steinberg S, Gustafsson O, Bergen SE, Nimgaonkar V, Hultman C, Landén M, Lichtenstein P, Sullivan P, Schalling M, Osby U, Backlund L, Frisén L, Langstrom N, Jamain S, Leboyer M, Etain B, Bellivier F, Petursson H, Sigur Sson E, Müller-Mysok B, Lucae S, Schwarz M, Schofield PR, Martin N, Montgomery GW, Lathrop M, Oskarsson H, Bauer M, Wright A, Mitchell PB, Hautzinger M, Reif A, Kelsoe JR, Purcell SM. Large-scale genome-wide association analysis of bipolar disorder reveals a new susceptibility locus near ODZ4. Nat Genet. 2011 Sep 18. Abstract

Comments on News and Primary Papers
Comment by:  David J. Porteous, SRF Advisor
Submitted 21 September 2011
Posted 21 September 2011

Consorting with GWAS for schizophrenia and bipolar disorder: same message, (some) different genes
On 18 September 2011, Nature Genetics published the results from the Psychiatric Genetics Consortium of two separate, large-scale GWAS analyses, for schizophrenia (Ripke et al., 2011) and for bipolar disorder (Sklar et al., 2011), and a joint analysis of both. By combining forces across several consortia who have previously published separately, we should now have some clarity and definitive answers.

For schizophrenia, the Stage 1 GWAS discovery data came from 9,394 cases and 12,462 controls from 17 studies, imputing 1,252,901 SNPs. The Stage 2 replication sample comprised 8,442 cases and 21,397 controls. Of the 136 SNPs which reached genomewide significance in Stage 1, 129 (95 percent) mapped to the MHC locus, long known to be associated with risk of schizophrenia. Of the remaining seven SNPs, five mapped to previously identified loci. In total, just 10 loci met or exceeded the criteria of genomewide significance of p <5 x 10-8 at Stage 1 and/or Stage 2. The 10 "best" SNPs identified eight loci: MIR137, TRIM26, CSM1, CNNM2, NT5C2 and TCF4 were tagged by intragenic SNPs, while the remaining two were at some distance from a known gene (343 kb from PCGEM1 and 126 kb from CCDC68). More important than the absolute significance levels, the overall odds ratios (with 95 percent confidence intervals) ranged from 1.08 (0.96-1.20) to 1.40 (1.28-1.52). These fractional increases contrast with the ~10-fold increase in risk to the first-degree relative of someone with schizophrenia (Gottesman et al., 2010).

Six of these eight loci have been reported previously, but ZNF804A, a past favorite, was noticeably absent from the "top 10" list. The main attention now will surely be on MIR137, a newly discovered locus which encodes a microRNA, mir137, known to regulate neuronal development. The authors remark that 17 predicted MIR137 targets had a SNP with a p <10-4, more than twice as many as for the control gene set (p <0.01), though this relaxed significance cutoff seems somewhat arbitrary and warrants further examination. The result for MIR137 immediately begs the questions, Does the "risk" SNP affect MIR137 function directly or indirectly, and if so, does it affect the expression of any of the putative targets identified here? These are fairly straightforward questions: positive answers are vital to the biological validation of these statistical associations. As has been the case for follow-up studies of ZNF804A, however (reviewed by Donohoe et al., 2010), unequivocal answers from GWAS "hits" can be hard to come by, not least because of the very modest relative risks that they confer. Let us hope that this is not the case for MIR137, but it is of passing note that for two of the eight replication cohorts, the direction of effect for MIR137 was in the opposite direction from the Stage 1 finding. Taken together with the odds ratios reported in the range of 1.11-1.22, the effect size for the end phenotype of schizophrenia may be challenging to validate functionally. Perhaps a relevant intermediate phenotype more proximal to the gene will prove tractable.

For bipolar disorder, Stage 1 comprised 7,481 cases versus 9,250 controls, and identified 34 promising SNPs. These were replicated in Stage 2 in an independent set of 4,496 cases and a whopping 42,422 controls: 18 of the 34 SNPs survived at p <0.05. Taking Stage 1 and 2 together confirmed the previous "hot" finding for CACNA1C (Odds ratio = 1.14) and introduced a new candidate in ODZ4 (Odds ratio = 0.88, i.e., the minor allele is presumably "protective" or under some form of selection). Previous candidates ANK3 and SYNE1 looked promising at Stage 1, but did not replicate at Stage 2.

Finally, in a combined analysis of schizophrenia plus bipolar disorder versus controls, three of the respective "top 10" loci, CACNA1C, ANK3, and the ITIH3-ITIH4 region, came out as significant overall. This is consistent with the earlier evidence from the ISC for an overlap between the polygenic index for schizophrenia and bipolar disorder (Purcell et al., 2009). It is also consistent with the epidemiological evidence for shared genetic risk between schizophrenia and bipolar disorder (Lichtenstein et al., 2009; Gottesman et al., 2010).

What can we take from these studies? The authorship lists alone speak to the size of the collaborative effort involved and the sheer organizational task, depending on your point of view, that most of the positive findings were reported on previously could be seen as valuable "replication," or unnecessary duplication of cost and effort. Whichever way you look at it, though, just two new loci for schizophrenia and one for bipolar looks like a modest return for such a gargantuan investment. It begs the question as to whether the GWAS approach is gaining the hoped-for traction on major mental illness. Indeed, the evidence suggests that the technology tide is rapidly turning away from allelic association methods and towards rare mutation detection by copy number variation, exome, and/or whole-genome sequencing (Vacic et al., 2011; Xu et al., 2011).

Family studies are, as ever and always, of critical importance in genetics, and to distinguish between inherited and de-novo mutations. While the emphasis of GWAS has been on the impact of common, ancient allelic variation, it has become ever more obvious from both past linkage studies and from contemporary GWAS and CNV studies just how heterogeneous these conditions are, and how little note individual cases and families take of conventional DSM diagnostic boundaries. Improved genetic and other tools through which to stratify risk, define phenotypes, and predict outcomes are clearly needed. Whether such tools can be derived for GWAS data remains to be seen. It is important to remind ourselves of two things. First, case/association studies tell us something about the average impact (odds ratio, with confidence interval) of a given allele in the population studied. In these very large GWAS, this measure of impact will be approximating to the European population average. The odds ratios tell us that the impact per allele is modest. More importantly in some ways, the allele frequencies also tell us that the vast majority of allele carriers are not affected. Likewise, a high proportion of cases are not carriers. In the main, they are subtle risk modifiers rather than causal variants. That said, follow-up studies may define rare, functional genetic variants in MIR137 or CACNA1C or ANK3 that are tagged by the risk allele and that have sufficiently strong effects in a subset of cases for a causal link to be made. With this new GWAS data in hand, these sorts of questions can now be addressed.

It should also be said that there is clearly a wealth of potentially valuable information lying below the surface of the most statistically significant findings, but how to sort the true from the false associations? Should the MIR137 finding, and the targets of MIR137, be substantiated by biological analysis, then that would certainly be something well worth knowing and following up on. Network analysis by gene ontology and protein-protein interaction may yield more, but these approaches need to be approached with caution when not securely anchored from a biologically validated start point. Epistasis and pleiotropy are most likely playing a role, but even in these large sample sets, the power to determine statistical (as opposed to biological) evidence is challenging. All told, one is left thinking that more incisive findings have and will in the future come from family-based approaches, through structural studies (CNVs and chromosome translocations), and, in the near future, whole-genome sequencing of cases and relatives.

References:

Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA, Lin DY, Duan J, Ophoff RA, Andreassen OA, Scolnick E, Cichon S, St Clair D, Corvin A, Gurling H, Werge T, Rujescu D, Blackwood DH, Pato CN, Malhotra AK, Purcell S, Dudbridge F, Neale BM, Rossin L, Visscher PM, Posthuma D, Ruderfer DM, Fanous A, Stefansson H, Steinberg S, Mowry BJ, Golimbet V, de Hert M, Jönsson EG, Bitter I, Pietiläinen OP, Collier DA, Tosato S, Agartz I, Albus M, Alexander M, Amdur RL, Amin F, Bass N, Bergen SE, Black DW, Børglum AD, Brown MA, Bruggeman R, Buccola NG, Byerley WF, Cahn W, Cantor RM, Carr VJ, Catts SV, Choudhury K, Cloninger CR, Cormican P, Craddock N, Danoy PA, Datta S, de Haan L, Demontis D, Dikeos D, Djurovic S, Donnelly P, Donohoe G, Duong L, Dwyer S, Fink-Jensen A, Freedman R, Freimer NB, Friedl M, Georgieva L, Giegling I, Gill M, Glenthøj B, Godard S, Hamshere M, Hansen M, Hansen T, Hartmann AM, Henskens FA, Hougaard DM, Hultman CM, Ingason A, Jablensky AV, Jakobsen KD, Jay M, Jürgens G, Kahn RS, Keller MC, Kenis G, Kenny E, Kim Y, Kirov GK, Konnerth H, Konte B, Krabbendam L, Krasucki R, Lasseter VK, Laurent C, Lawrence J, Lencz T, Lerer FB, Liang KY, Lichtenstein P, Lieberman JA, Linszen DH, Lönnqvist J, Loughland CM, Maclean AW, Maher BS, Maier W, Mallet J, Malloy P, Mattheisen M, Mattingsdal M, McGhee KA, McGrath JJ, McIntosh A, McLean DE, McQuillin A, Melle I, Michie PT, Milanova V, Morris DW, Mors O, Mortensen PB, Moskvina V, Muglia P, Myin-Germeys I, Nertney DA, Nestadt G, Nielsen J, Nikolov I, Nordentoft M, Norton N, Nöthen MM, O'Dushlaine CT, Olincy A, Olsen L, O'Neill FA, Orntoft TF, Owen MJ, Pantelis C, Papadimitriou G, Pato MT, Peltonen L, Petursson H, Pickard B, Pimm J, Pulver AE, Puri V, Quested D, Quinn EM, Rasmussen HB, Réthelyi JM, Ribble R, Rietschel M, Riley BP, Ruggeri M, Schall U, Schulze TG, Schwab SG, Scott RJ, Shi J, Sigurdsson E, Silverman JM, Spencer CC, Stefansson K, Strange A, Strengman E, Stroup TS, Suvisaari J, Terenius L, Thirumalai S, Thygesen JH, Timm S, Toncheva D, van den Oord E, van Os J, van Winkel R, Veldink J, Walsh D, Wang AG, Wiersma D, Wildenauer DB, Williams HJ, Williams NM, Wormley B, Zammit S, Sullivan PF, O'Donovan MC, Daly MJ, Gejman PV. Genome-wide association study identifies five new schizophrenia loci. Nat Genet . 2011 Sep 18. Abstract

Psychiatric GWAS Consortium Bipolar Disorder Working Group, Sklar P, Ripke S, Scott LJ, Andreassen OA, Cichon S, Craddock N, Edenberg HJ, Nurnberger JI Jr, Rietschel M, Blackwood D, Corvin A, Flickinger M, Guan W, Mattingsdal M, McQuillin A, Kwan P, Wienker TF, Daly M, Dudbridge F, Holmans PA, Lin D, Burmeister M, Greenwood TA, Hamshere ML, Muglia P, Smith EN, Zandi PP, Nievergelt CM, McKinney R, Shilling PD, Schork NJ, Bloss CS, Foroud T, Koller DL, Gershon ES, Liu C, Badner JA, Scheftner WA, Lawson WB, Nwulia EA, Hipolito M, Coryell W, Rice J, Byerley W, McMahon FJ, Schulze TG, Berrettini W, Lohoff FW, Potash JB, Mahon PB, McInnis MG, Zöllner S, Zhang P, Craig DW, Szelinger S, Barrett TB, Breuer R, Meier S, Strohmaier J, Witt SH, Tozzi F, Farmer A, McGuffin P, Strauss J, Xu W, Kennedy JL, Vincent JB, Matthews K, Day R, Ferreira MA, O'Dushlaine C, Perlis R, Raychaudhuri S, Ruderfer D, Hyoun PL, Smoller JW, Li J, Absher D, Thompson RC, Meng FG, Schatzberg AF, Bunney WE, Barchas JD, Jones EG, Watson SJ, Myers RM, Akil H, Boehnke M, Chambert K, Moran J, Scolnick E, Djurovic S, Melle I, Morken G, Gill M, Morris D, Quinn E, Mühleisen TW, Degenhardt FA, Mattheisen M, Schumacher J, Maier W, Steffens M, Propping P, Nöthen MM, Anjorin A, Bass N, Gurling H, Kandaswamy R, Lawrence J, McGhee K, McIntosh A, McLean AW, Muir WJ, Pickard BS, Breen G, St Clair D, Caesar S, Gordon-Smith K, Jones L, Fraser C, Green EK, Grozeva D, Jones IR, Kirov G, Moskvina V, Nikolov I, O'Donovan MC, Owen MJ, Collier DA, Elkin A, Williamson R, Young AH, Ferrier IN, Stefansson K, Stefansson H, Thornorgeirsson T, Steinberg S, Gustafsson O, Bergen SE, Nimgaonkar V, Hultman C, Landén M, Lichtenstein P, Sullivan P, Schalling M, Osby U, Backlund L, Frisén L, Langstrom N, Jamain S, Leboyer M, Etain B, Bellivier F, Petursson H, Sigur Sson E, Müller-Mysok B, Lucae S, Schwarz M, Schofield PR, Martin N, Montgomery GW, Lathrop M, Oskarsson H, Bauer M, Wright A, Mitchell PB, Hautzinger M, Reif A, Kelsoe JR, Purcell SM. Large-scale genome-wide association analysis of bipolar disorder reveals a new susceptibility locus near ODZ4. Nat Genet. 2011 Sep 18. Abstract

Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF, Hultman CM. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet . 2009 Jan 17 ; 373(9659):234-9. Abstract

Gottesman II, Laursen TM, Bertelsen A, Mortensen PB. Severe mental disorders in offspring with 2 psychiatrically ill parents. Arch Gen Psychiatry . 2010 Mar 1 ; 67(3):252-7. Abstract

Donohoe G, Morris DW, Corvin A. The psychosis susceptibility gene ZNF804A: associations, functions, and phenotypes. Schizophr Bull . 2010 Sep 1 ; 36(5):904-9. Abstract

Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, Sklar P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature . 2009 Aug 6 ; 460(7256):748-52. Abstract

Vacic V, McCarthy S, Malhotra D, Murray F, Chou HH, Peoples A, Makarov V, Yoon S, Bhandari A, Corominas R, Iakoucheva LM, Krastoshevsky O, Krause V, Larach-Walters V, Welsh DK, Craig D, Kelsoe JR, Gershon ES, Leal SM, Dell Aquila M, Morris DW, Gill M, Corvin A, Insel PA, McClellan J, King MC, Karayiorgou M, Levy DL, DeLisi LE, Sebat J. Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature . 2011 Mar 24 ; 471(7339):499-503. Abstract

Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, Gogos JA, Karayiorgou M. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet . 2011 Jan 1 ; 43(9):864-8. Abstract

View all comments by David J. PorteousComment by:  Patrick Sullivan, SRF Advisor
Submitted 26 September 2011
Posted 26 September 2011
  I recommend the Primary Papers

The two papers appearing online in Nature Genetics last Sunday are truly important additions to our increasing knowledge base for these disorders. The core analyses have been presented multiple times at international meetings in the past two years.

Since then, the available sample sizes for both schizophrenia and bipolar disorder have grown considerably. If the recently published data are any guide, the next round of analyses should be particularly revealing.

The PGC results and almost all of the data that were used in these reports are available by application to the controlled-access repository.

Please see the references for views of this area that contrast with those of Professor Porteous.

References:

Sullivan P. Don't give up on GWAS. Molecular Psychiatry. 2011 Aug 9. Abstract

Kim Y, Zerwas S, Trace SE, Sullivan PF. Schizophrenia genetics: where next? Schizophr Bull. 2011;37:456-63. Abstract

View all comments by Patrick SullivanComment by:  Edward Scolnick
Submitted 28 September 2011
Posted 29 September 2011
  I recommend the Primary Papers

It is clear in human genetics that common variants and rare variants have frequently been detected in the same genes. Numerous examples exist in many diseases. The bashing of GWAS in schizophrenia and bipolar illness indicates, by those who make such comments, a lack of understanding of human genetics and where the field is. When these studies were initiated five years ago, next-generation sequencing was not available. Large samples of populations or trios or quartets did not exist. The international consortia have worked to collect such samples that are available for GWAS now, as well as for detailed sequencing studies. Before these studies began there was virtually nothing known about the etiology of schizophrenia and bipolar illness. The DISC1 gene translocation in the famous family was an important observation in that family. But almost a decade later there is still no convincing data that variants in Disc1 or many of its interacting proteins are involved in the pathogenesis of human schizophrenia or major mental illness.

Sequencing studies touted to be the Occam's razor for the field are beginning, and already, as in the past in this field, preemptive papers are appearing inadequately powered to draw any conclusions with certainty. Samples collected by the consortia will be critical to clarify the role of rare variants. This will take time and care so as not to set the field back into the morass it used to be. GWAS are basically modern public health epidemiology providing important clues to disease etiology. Much work is clearly needed once hits are found, just as it has been in traditional epidemiology. But in many fields, GWAS has already led to important biological insights, and it is certain it will do so in this field as well because the underlying principles of human genetics apply to this field, also. The primary problem in the field is totally inadequate funding by government organizations that consistently look for shortcuts to gain insights and new treatments, and forget how genetics has transformed cancer, immunology, autoimmune and inflammatory diseases, and led to better diagnostics and treatments. The field will never understand the pathogenesis of these illnesses until the genetic architecture is deciphered. The first enzyme discovered in E. coli DNA biochemistry was a repair enzyme—not the enzyme that replicated DNA—and this was discovered through genetics. The progress in this field has been dramatic in the past five years. All doing this work realize that this is only a beginning and that there is a long hard road to full understanding. But to denigrate the beginning, which is clearly solid, makes no sense and indicates a provincialism unbecoming to a true scientist.

View all comments by Edward ScolnickComment by:  Nick CraddockMichael O'Donovan (SRF Advisor)
Submitted 11 October 2011
Posted 11 October 2011

At the start of the millennium, only two molecular genetic findings could be said with a fair amount of confidence to be etiologically relevant to schizophrenia and bipolar disorder. The first of these was that deletions of chromosome 22q11 that are known to cause velo-cardio-facial syndrome also confer a substantial increase in risk of psychosis. The second was the discovery by David St Clair, Douglas Blackwood, and colleagues (St Clair et al., 1990) of a balanced translocation involving chromosomes 1 and 11 that co-segregates with a range of psychiatric phenotypes in a single large family, was clearly relevant to the etiology of illness in that family (Blackwood et al., 2001). The latter finding has led to the conjecture, based upon a translocation breakpoint analysis reported by Kirsty Millar, David Porteous, and colleagues (Millar et al., 2000), that elevated risk in that family is conferred by altered function of a gene eponymously named DISC1. Just over a decade later, what can we now say with similar degrees of confidence? The relevance of deletions of 22q11 has stood the test of time—indeed, has strengthened—through further investigation (Levinson et al., 2011, being only one example), while the relevance of DISC1 remains conjecture. That the evidence implicating this gene is no stronger than it was all those years ago provides a clear illustration of the difficulties inherent in drawing etiological inferences from extremely rare mutations regardless of their effect size.

However, with the publication of several GWAS and CNV papers, culminating in the two mega-analyses reported by the PGC that are the subject of this commentary, one on schizophrenia, one on bipolar disorder, together reporting a total of six novel loci, very strong evidence has accumulated for approximately 20 new loci in psychosis. The majority of these are defined by SNPs, the remainder by copy number variants, and virtually all (including the rare, relatively high-penetrance CNVs) have emerged through the application of GWAS technology to large case-control samples, not through the study of linkage or families. Have GWAS approaches proven their worth? Clearly, the genetic findings represent the tip of a very deeply submerged iceberg, and it is possible that not all will stand the test of time and additional data, although the current levels of statistical support suggest the majority will do so. Nevertheless, the findings of SNP and CNV associations (including 22q11 deletions) seem to us to provide the first real signs of progress in uncovering strongly supported findings of primary etiological relevance to these disorders. Although SNP effects are small, the experience from other complex phenotypes is that statistically robust genetic associations, even those of very small effect, can highlight biological pathways of etiological (height; Lango Allen et al., 2010) and of possible therapeutic relevance (Alzheimer's disease; Jones et al., 2010). Moreover, it would seem intuitively likely that even if capturing the total heritable component of a disorder is presently a distant goal, the greater the number of associations captured, the better will be the snapshot of the sorts of processes that contribute to a disorder, and that might therefore be manipulated in its treatment. Thus, there is evidence that building even a very incomplete picture of the sort of genes that influence risk is an excellent method of informing understanding of pathogenesis of a highly complex disorder (or set of disorders).

As in previous GWAS and CNV endeavors, the PGC studies have required a significant degree of altruism from the hundreds of investigators and clinicians who have shared their data with little hope of significant academic credit. Moreover, where ethical approval permitted, the datasets have been made virtually open source for other investigators who are not part of the study. Sadly, this generosity of spirit is not matched in the rather curmudgeonly commentary provided by David Porteous. Rather than challenging the science or conduct of the study, it appears to us that the commentary takes the easier route of damnation by faint praise, distortion, and even innuendo.

The strongest finding, that being of association to the extended MHC region, is dismissed as "long known to be associated with risk of schizophrenia." How that knowledge was acquired a long time ago is unclear, but it cannot have been based upon data. It is true that weak and inconsistent associations at the MHC locus have been reported, even predating the molecular genetic era (McGuffin et al., 1978), but not until the landmark studies of the International Schizophrenia Consortium (2009), the Molecular Genetics of Schizophrenia Consortium (AbstractShi et al., 2009), and the SGENE+ Consortium (Stefansson et al., 2009) have the findings been strong enough to be described as knowledge. Porteous’ dismissive tone continues with the phrase "just 10 loci met….," the word "just" being a qualifier that seems designed to denigrate rather than challenge the results. Given the paucity of etiological clues, others might consider this a good yield. The observation in which the effect sizes at the detected loci are contrasted "with the ~10-fold increase in risk to the first-degree relative of someone with schizophrenia" is so fatuous it is difficult to believe its function is anything other than to insinuate in the mind of the reader the impression of failure. Yet no one remotely aware of the expectations behind GWAS would expect that the effect sizes of any common risk allele would bear any resemblance to that of family history, the latter reflecting the combined effects of many risk alleles.

Among the most important findings of the PGC schizophrenia group were those of strong evidence for association between a variant in the vicinity of a gene encoding regulatory RNA MIR137, and the subsequent finding that schizophrenia association signals were significantly enriched (P <0.01) among predicted targets of this regulatory RNA. Of course, like the other findings, there is room for the already very strong data to be further strengthened, but that finding alone opens up a whole new window in potential pathogenic mechanisms. Yet Porteous casually throws four handfuls of mud, dismissing the enrichment p <0.01 as a "relaxed significance cutoff," which "seems somewhat arbitrary," and that "warrants further examination," and commenting that "it is of passing note that for two of the eight replication cohorts, the direction of effect for MIR137 was in the opposite direction from the Stage 1 finding." If Porteous feels he has the expertise to pronounce on this analysis, it would behoove him well to choose his words more carefully. Since when is a P value of <0.01 "relaxed" when applied to a test of a single hypothesis? Can he really be unaware of the longstanding convention of regarding P <0.05 as significant in specific hypothesis testing? If he is not unaware of this, why is it generally applicable but "somewhat arbitrary" in the context of the PGC study? As for "further examination being warranted," this is true of any scientific finding, but what does he specifically mean in the context of his commentary? And why is it of "passing note" that not all samples show trends in the same direction? In the context of the well-known issues in GWAS concerning individual small samples and power, what is surprising about that? There may be simple answers to these questions, but we find it difficult to draw any other conclusion than that the choice of language is anything other than another attempt to sow seeds of doubt through innuendo rather than analysis.

The remark that "ZNF804A, a past favourite, was noticeably absent" falls well short of the standard one might expect of serious discourse. The choice of language suggests a desire to denigrate rather than analyse, and to insinuate without specific evidence that any interest in this gene should now be over. In fact, the largest study of this gene to date is that of Williams et al. (2010), which actually includes at least two-thirds of the PGC discovery dataset and is based on over 57,000 subjects, a sample almost three times as large as the mega-analysis sample of the PGC.

Porteous’ overall conclusion from the two studies is "whichever way you look at it, though, just two new loci for schizophrenia and one for bipolar looks like a modest return for such a gargantuan investment." This appraisal is misleading. The PGC studies were actually relatively small investments, being based on a synthesis of pre-existing data. Since the studies use existing data, there is naturally an expectation that some of the loci identified will have been previously reported as either significant or have otherwise been flagged up as of interest, while some will be new. Overall, the return on the GWAS investment is not just the six novel loci (rather than three); it is the totality of the findings, which, as noted above, currently number about 20 loci. The schizophrenia research community should also be made aware, if they are not already, that the return on these investments is not "one off"; it is cumulative. In the coming years, the component datasets will continue to generate a return in new gene discoveries (including CNVs yet to be reported by the PGC) as they are added (at essentially no cost) to other emerging GWAS datasets being generated largely through charitable support. With the returns in the bank already, one could (and we do) argue that the investment is negligible, particularly given the cost in human and economic terms of continued ignorance about these illnesses that blight so many lives.

It is true that with so little being known compared with what is yet to be known, the biological insights that can be made from the existing data are limited. This is equally true of the common and rare variants identified so far, and we are not aware of any of the "incisive findings" that Porteous claims have already come from alternative approaches, although the emergence of strong evidence for deletions at NRXN1 as a susceptibility variant for schizophrenia through meta-analysis of case-control GWAS data (one of the extra returns on the GWAS data we referred to above) deserves that description (Kirov et al., 2009). But this is not a cause for despair; in contrast to the future promises made on behalf of other as yet unproven designs, for eyes and minds that are open enough to see, the recent papers provide unambiguous evidence for a straightforward route to identifying more genes and pathways involved in the disorder. Even Porteous has partial sight of this, since he notes that "there is clearly a wealth of potentially valuable information lying below the surface of the most statistically significant findings." What he appears unable to see is "how to sort the true from the false associations?" The answer for a large number of loci is simple. Better-powered studies based upon larger sample sizes.

We would like to add a note of caution for those who too readily denigrate case-control approaches in favor of hyping other approaches, none of which are yet so well proven routes to success. We are not against those approaches; indeed, we are actively involved in them. But we are concerned that the hype surrounding sequencing, and the generation of what we think are unrealistic expectations, will make those designs vulnerable to attack from those who seem only too keen to make premature and inaccurate pronouncements of failure, who seem desperate to derive straw from nuggets of gold. If, as we believe is likely, it turns out to be quite a few years more before sequencing studies become sufficiently powered to provide large numbers of robust findings, as for GWAS, the consequence could be withdrawal of substantial government funding before those designs have had a chance to live up to their potential. That such an outcome has already largely been achieved for GWAS in some countries might be a source of rejoicing in some quarters, but it should also send out a warning to all who broadly hold the view that understanding the genetics of these disorders is central to understanding their origins, and to improving their future management.

The recent PGC papers represent an impressive, international collaboration based upon methodologies that have a proven track record in delivering important biological insights into other complex disorders, and now in psychiatry. Given the complexity of psychiatric phenotypes, we believe it is likely that a variety of approaches, paradigms, and ideas will be essential for success, including the approaches espoused by those who believe the evidence is compatible with essentially Mendelian inheritance. Inevitably, there will be sincerely held differences of opinion concerning the best way forward, and, of course, in any area of science, reasoned arguments based upon a fair assessment of the evidence are essential. Nevertheless, given there are sufficient uncertainties about what can be realistically delivered in the short term by the newer technologies, we suggest that the cause of bringing benefit to patients will most likely be better served by humility, realism, and a constructive discussion in which there is no place for belittling real achievements, for arrogance, or for dogmatic posturing.

References

Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, Muir WJ. Schizophrenia and affective disorders--cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet. 2001 Aug;69(2):428-33. Abstract

International Schizophrenia Consortium Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009 Aug 6;460(7256):748-52. Abstract

Jones L, Holmans PA, Hamshere ML, Harold D, Moskvina V, Ivanov D, et al. Genetic evidence implicates the immune system and cholesterol metabolism in the etiology of Alzheimer's disease. PLoS One. 2010 Nov 15;5(11):e13950. Erratum in: PLoS One. 2011;6(2). Abstract

Kirov G, Rujescu D, Ingason A, Collier DA, O'Donovan MC, Owen MJ. Neurexin 1 (NRXN1) deletions in schizophrenia. Schizophr Bull. 2009 Sep;35(5):851-4. Epub 2009 Aug 12. Review. Abstract

Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F, et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature. 2010 Oct 14;467(7317):832-8. Abstract

Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J, et al. Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry. 2011 Mar;168(3):302-16. Abstract

McGuffin P, Farmer AE, Rajah SM. Histocompatability antigens and schizophrenia. Br J Psychiatry. 1978 Feb;132:149-51. Abstract

Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet. 2000 May 22;9(9):1415-23. Abstract

Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I, et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature. 2009 Aug 6;460(7256):753-7. Abstract

St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G, et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet. 1990 Jul 7;336(8706):13-6. Abstract

Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, et al Common variants conferring risk of schizophrenia. Nature. 2009 Aug 6;460(7256):744-7. Abstract

The Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 2011 Sep 18;43(10):969-976. Abstract

Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry. 2011 Apr;16(4):429-41. Abstract

View all comments by Nick Craddock
View all comments by Michael O'DonovanComment by:  Todd LenczAnil Malhotra (SRF Advisor)
Submitted 11 October 2011
Posted 11 October 2011

It is worth re-emphasizing that efforts such as the Psychiatric GWAS Consortium do not rule out potentially important discoveries from alternative strategies such as endophenotypic approaches or examination of rare variants. Indeed, such strategies will be necessary to understand the functional mechanisms implicated by GWAS hits.

Moreover, we note that the two recently published PGC papers were not designed to exclude a role for previously identified candidate loci such as DISC1 (Hodgkinson et al., 2004), or prior GWAS findings such as rs1344706 at ZNF804A (Williams et al., 2011). For both these loci, and many others that have been proposed, meta-analysis of available samples suggest very small effect sizes (OR ~1.1), as might be expected for common variants. As noted in Supplementary Table S12 of the schizophrenia PGC paper (Ripke et al., 2011), the currently available sample size (~9,000 cases/~12,000 controls) of the discovery cohort was still underpowered to detect variants with odds ratios of 1.1, especially if they have a minor allele frequency of 20 percent or below.

An instructive example arises from the field of diabetes genetics. An association of a missense variant (rs1801282, Pro12Ala) in PPARG to type 2 diabetes was first reported in a sample of n = 91 Japanese-American patients (Deeb et al., 1998). Many subsequent studies failed to replicate the effect, and the initial large GWAS meta-analysis (involving >14,000 cases and ~18,000 controls; Zeggini et al., 2007) only detected the association at a p-value that would be considered non-significant by today’s standard (p =1.7*10-6). Interestingly, the authors deemed the association to be “confirmed,” and the result was widely accepted within that field. Subsequent meta-analysis, involving twice as many subjects (total n = 67,000), finally obtained conventional genomewide levels of significance (p <5*10-8; Gouda et al., 2010).

References:

Deeb SS, Fajas L, Nemoto M, Pihlajamäki J, Mykkänen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet. 1998 Nov;20(3):284-7. Abstract

Gouda HN, Sagoo GS, Harding AH, Yates J, Sandhu MS, Higgins JP. The association between the peroxisome proliferator-activated receptor-gamma2 (PPARG2) Pro12Ala gene variant and type 2 diabetes mellitus: a HuGE review and meta-analysis. Am J Epidemiol. 2010 Mar 15;171(6):645-55. Abstract

Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH, Malhotra AK. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet. 2004 Nov;75(5):862-72. Abstract

Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, Georgieva L, Williams NM, Morris DW, Quinn EM, Giegling I, Ikeda M, Wood J, Lencz T, Hultman C, Lichtenstein P, Thiselton D, Maher BS; Molecular Genetics of Schizophrenia Collaboration (MGS) International Schizophrenia Consortium (ISC), SGENE-plus, GROUP, Malhotra AK, Riley B, Kendler KS, Gill M, Sullivan P, Sklar P, Purcell S, Nimgaonkar VL, Kirov G, Holmans P, Corvin A, Rujescu D, Craddock N, Owen MJ, O'Donovan MC. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry. 2011 Apr;16(4):429-41. Abstract

Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, Rayner NW, Freathy RM, Barrett JC, Shields B, Morris AP, Ellard S, Groves CJ, Harries LW, Marchini JL, Owen KR, Knight B, Cardon LR, Walker M, Hitman GA, Morris AD, Doney AS; Wellcome Trust Case Control Consortium (WTCCC), McCarthy MI, Hattersley AT. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science. 2007 Jun 1;316(5829):1336-41. Abstract

View all comments by Todd Lencz
View all comments by Anil Malhotra

Comments on Related News


Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Todd LenczAnil Malhotra (SRF Advisor)
Submitted 3 July 2009
Posted 3 July 2009

The three companion papers published in Nature provide important new evidence for a role of the MHC complex and common variation across the genome in risk for schizophrenia. These studies have exploited the availability of comprehensive genotyping technologies, coupled with large cohorts of cases and controls, to identify candidate loci for disease susceptibility.

A notable feature of these papers is the clear willingness of each of the groups to share its data, and to provide overlapping presentations of each others’ results. The combination of datasets permitted the statistical significance of the MHC findings to emerge, thereby increasing confidence in results. The implication that immune processes may interact with genetic risk to influence schizophrenia risk is consistent with several lines of evidence, including our own small GWAS study (Lencz et al., 2007) implicating cytokine receptors in schizophrenia susceptibility.

Perhaps most intriguing is the finding from the International Schizophrenia Consortium demonstrating that a “score” test—combining information from many thousands of common variants—can reliably differentiate patients and controls across multiple psychiatric cohorts. These results indicate that hundreds, if not thousands, of genes of small effect may contribute to schizophrenia risk. Moreover, these same genes were shown to contribute to bipolar risk (but not risk for non-psychiatric disorders such as diabetes).

Much more work remains to be done in psychiatric genetics. While the score test accounted for about 3 percent of the observed case-control variance, statistical modeling suggested that common variation could explain as much as one-third or more of the total risk. Nevertheless, there remains a substantial proportion of genetic “dark matter” (unexplained variance), given the high heritability of a disorder such as schizophrenia. Complementary approaches are needed to further parse the source of the common genetic variance, as well as to identify rare yet highly penetrant mutations. Additional techniques, such as pharmacogenetic studies and endophenotypic research, will help to explicate the functionality and clinical significance of observed risk alleles.

View all comments by Todd Lencz
View all comments by Anil Malhotra

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Daniel Weinberger, SRF Advisor
Submitted 3 July 2009
Posted 3 July 2009

The three Nature papers reporting GWAS results in a large sample of cases of schizophrenia and controls from around Western Europe and the U.S. are decidedly disappointing to those expecting this strategy to yield conclusive evidence of common variants predicting risk for schizophrenia. Why has this extensive and very costly effort not produced more impressive results? There are likely to be many explanations for this, involving the usual refrains about clinical and genetic heterogeneity, diagnostic imprecision, and technical limitations in the SNP chips. But the likely, more fundamental problem in psychiatric genetics involves the biologic complexity of the conditions themselves, which renders them especially poorly suited to the standard GWAS strategy. The GWA analytic model assumes fixed, predictable relationships between genetic risk and illness, but simple relationships between genetic risk and complex pathophysiological mechanisms are unlikely. Many biologic functions show non-linear relationships, and depending on the biologic context, more of a potential pathogenic factor, can make things worse or it can make them better. Studies of complex phenotypes in model systems illustrate that individual gene effects depend upon non-linear interactions with other genes (Toma et al., 2002; Shaoa et al, 2008). Similar observations are beginning to emerge in human disorders, e.g., in risk for cancer (Lo et al., 2008) and depression (Pezawas et al., 2008).

The GWA approach also assumes that diagnosis represents a unitary biological entity, but most clinical diagnoses are syndromal and biologically heterogeneous, and this is especially true in psychiatric disorders. Type 2 diabetes is the clinical expression of changes in multiple physiologic processes, including in pancreatic function, in adipose cell function, as well as in eating behavior. Likewise, hypertension results from abnormalities in many biologic processes (e.g., vascular reactivity, kidney function, CNS control of blood pressure, metabolic factors, sodium regulation), and even a large effect on any specific process within a subset of individuals will seem small when measured in large unrelated samples (Newton-Cheh et al., 2009). In the case of the cognitive and emotional problems associated with psychiatric disorders, the biologic pathways to clinical manifestations are probably much more heterogeneous. While the results of GWAS in disorders like type 2 diabetes and hypertension have been more informative than in the schizophrenia results so far, they, too, have been disappointing, considering all the fanfare about their expectations. But given the pathophysiologic realities of diabetes, hypertension, or psychiatric disorders, how could the effect of any common genetic variant acting on only one of the diverse pathophysiological mechanisms implicated in these disorders be anything other than small when measured in large pathophysiologically heterogeneous populations? Other approaches, e.g., family studies, studies of smaller but much better characterized samples, and studies of genetic interactions in these samples, will be necessary to understand the variable genetic architectures of such biologically complex and heterogeneous disorders.

References:

Toma DP, White KP, Hirsch J and Greenspan RJ: Identification of genes involved in Drosophila melanogaster geotaxis, a complex behavioral trait. Nature Genetics 2002; 31: 349-353. Abstract

Shaoa H, Burragea LC, Sinasac DS et al : Genetic architecture of complex traits: Large phenotypic effects and pervasive epistasis. PNAS 2008 105: 19910–19914. Abstract

Lo S-W, Chernoff H, Cong L, Ding Y, and Zheng T: Discovering interactions among BRCA1 and other candidate genes associated with sporadic breast cancer. PNAS 2008; 105: 12387–12392. Abstract

Pezawas L, Meyer-Lindenberg A, Goldman AL, et al.: Biologic epistasis between BDNF and SLC6A4 and implications for depression. Mol Psychiatry 2008;13:709-716. Abstract

Newton-Cheh C, Larson MG, Vasan RS: Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Gen 2009; 41: 348-353. Abstract

View all comments by Daniel Weinberger

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Irving Gottesman
Submitted 3 July 2009
Posted 3 July 2009
  I recommend the Primary Papers

The synthesis and extraction of the essence of the 3 Nature papers by Heimer and Farley represents science reporting at its best. Completion of the task while the ink was still wet shows that SRF is indeed in good hands. Congratulations on being concise, even-handed, non-judgmental, and challenging under the pressure of time.

View all comments by Irving Gottesman

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Christopher RossRussell L. Margolis
Submitted 6 July 2009
Posted 6 July 2009

Schizophrenia Genetics: Glass Half Full?
While it may be disappointing that the GWAS described above did not identify more genes, they nevertheless represent a landmark in psychiatric genetics and suggest a dual approach for the future: continued large-scale genetic association studies along with alternative genetic approaches leading to the discovery of new genetic etiologies, and more functional investigations to identify pathways of pathogenesis—which may themselves suggest new etiologies.

The consistent identification of an association with the MHC locus reinforces (without proving, as pointed out in the SRF news story) long-standing interest in the involvement of infectious or immune factors in schizophrenia pathogenesis (Yolken and Torrey, 2008). Epidemiologic and neuropathological studies that include patients selected for the presence or absence of immunologic genetic risk variants could potentially clarify etiology; cell and mouse model studies could clarify pathogenesis (Ayhan et al., 2009). It is striking that a major genetic finding in schizophrenia serves to reinforce the concept of environmental risk factors.

The two specific genes identified by the SGENE consortium, NRGN and TCF4, offer intriguing new leads into schizophrenia. This should foster a number of further genetic and neurobiological studies. Deep resequencing (and CNV analysis) can detect rare causative mutations, as exemplified by TCF4 mutations leading to Pitt-Hopkins syndrome. Neurogranin already has clear connections to interesting signaling pathways related to glutamate transmission. A hope is that further studies of both gene products and their interactions will identify pathogenic pathways.

The ISC used common genetic variants “en masse” to generate a “polygene score” from discovery samples of patients; that score was able to predict case status in test populations. The success of this approach provides very strong evidence that a portion of schizophrenia risk status is attributable to common genetic variants acting in concert and that schizophrenia shares genetic factors with bipolar disorder, but not with other diseases. This analysis has multiple practical implications for the direction of research. First, since polygenic factors explain only a portion of the genetic risk, the search for other genetic factors—rare mutations of major effect detectable by deep sequencing, CNVs, variations in tandem repeats (Bruce et al., 2009, in press), and other genomic lesions—takes on new importance. Second, a meaningful integration of polygenic factors in a way that facilitates understanding of schizophrenia pathogenesis and the discovery of therapeutic targets will require identification of relevant pathways. Examination of patient-derived material—such as neurons differentiated from induced pluripotent stem cells taken from well-characterized, patient populations—may be of great value.

The remarkable overlap between the genetic factors of schizophrenia and bipolar disorder suggests the need for further and more inclusive clinical studies—not just of “endophenotypes,” but also of the phenotypes themselves, together, rather than in isolation (Potash and Bienvenu, 2009). For instance, it is only within the past few years that the importance of cognitive dysfunction in schizophrenia has been appreciated. Cognition in bipolar disorder is even less well studied.

How much is really known about the longitudinal course of both disorders? Do genetic factors predict disease outcome? It is only recently that studies have focused intensively on the early course of schizophrenia and its prodrome. Much more is still to be learned, and even less is known about bipolar disorder. In conjunction with this greater understanding of clinical phenotype, it will clearly be necessary to refine the approach to phenotype by establishing the biological framework for these diseases and by establishing biomarkers, such as disruption in white matter (Karlsgodt et al., 2009) or abnormalities in functional networks (Demirci et al., 2009), that cut across current nosological categories. In turn, longitudinal study of clinical, imaging, and functional outcomes of schizophrenia and bipolar disorders should facilitate both focused candidate genetic studies and GWAS of large populations.

References:

Yolken RH, Torrey EF. Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol Psychiatry. 2008 May;13(5):470-9. Abstract

Ayhan Y, Sawa A, Ross CA, Pletnikov MV. Animal models of gene-environment interactions in schizophrenia. Behav Brain Res. 2009 Apr 18. Abstract

Potash JB, Bienvenu OJ. Neuropsychiatric disorders: Shared genetics of bipolar disorder and schizophrenia. Nat Rev Neurol. 2009 Jun;5(6):299-300. Abstract

Karlsgodt KH, Niendam TA, Bearden CE, Cannon TD. White matter integrity and prediction of social and role functioning in subjects at ultra-high risk for psychosis. Biol Psychiatry. 2009 May 6. Epub ahead of print. Abstract

Demirci O, Stevens MC, Andreasen NC, Michael A, Liu J, White T, Pearlson GD, Clark VP, Calhoun VD. Investigation of relationships between fMRI brain networks in the spectral domain using ICA and Granger causality reveals distinct differences between schizophrenia patients and healthy controls. Neuroimage. 2009 Jun;46(2):419-31. Abstract

Bruce HA, Sachs NA, Rudnicki DD, Lin SG, Willour VL, Cowell JK, Conroy J, McQuaid D, Rossi M, Gaile DP, Nowak NJ, Holmes SE, Sklar P, Ross CA, DeLisi LE, Margolis RL. Long tandem repeats as a form of genomic copy number variation: structure and length polymorphism of a chromosome 5p repeat in control and schizophrenia populations. Psychiatric Genetics, in press.

View all comments by Christopher Ross
View all comments by Russell L. Margolis

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  David Collier
Submitted 6 July 2009
Posted 6 July 2009
  I recommend the Primary Papers

This report is unnecessarily negative, from my point of view. The three studies show not only that GWAS can identify susceptibility alleles for schizophrenia, but that the majority of risk comes from common variants of small effect. These can be found, but as in other complex traits and diseases, such as obesity and height, considerable power is needed, because effect sizes are small, meaning greater samples sizes. This approach works: there are now almost 60 variants influencing height (Hirschhorn et al., 2009; Soranzo et al., 2009; Sovio et al., 2009). Furthermore, the genes identified so far from both traditional mapping, CNV analysis and GWAS, point to two biological pathways, the integrity of the synapse (neurexin 1, neurogranin, etc.) and the wnt/GSK3β signaling pathway (DISC1, TCF4, etc.), which is involved in functions such as neurogenesis in the brain. The identification of disease pathways for schizophrenia has major implications and should not be underestimated. It would be daft to lose nerve now and turn away from GWAS just as they are bearing fruit.

I would like to correct/expand on my comments to Peter Farley, to say that while statistical significance for some markers may be reached sooner, significance for many of the hundreds if not thousands of common schizophrenia susceptibility alleles of small effect might not emerge until samples of 100,000 cases and more than 100,000 controls have been collected. Another point is that organizations such the Wellcome Trust are already assembling case samples for schizophrenia as well as control samples.

Also, I would like to clarify that I believe the remainder of genetic variation, after common variation has been taken into account, will come from some combination of rare CNVs, other rare variants such as SNPs and other types of genetic marker such as variable number of tandem repeats (VNTRs) and of course the much neglected contribution from gene-environment interactions, in which main genetic effects may be obscured.

References:

Hirschhorn JN, Lettre G. Progress in genome-wide association studies of human height. Horm Res. 2009 Apr 1 ; 71 Suppl 2():5-13. Abstract

Soranzo N, Rivadeneira F, Chinappen-Horsley U, Malkina I, Richards JB, Hammond N, Stolk L, Nica A, Inouye M, Hofman A, Stephens J, Wheeler E, Arp P, Gwilliam R, Jhamai PM, Potter S, Chaney A, Ghori MJ, Ravindrarajah R, Ermakov S, Estrada K, Pols HA, Williams FM, McArdle WL, van Meurs JB, Loos RJ, Dermitzakis ET, Ahmadi KR, Hart DJ, Ouwehand WH, Wareham NJ, Barroso I, Sandhu MS, Strachan DP, Livshits G, Spector TD, Uitterlinden AG, Deloukas P. Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size. PLoS Genet. 2009 Apr 1 ; 5(4):e1000445. Abstract

Sovio U, Bennett AJ, Millwood IY, Molitor J, O'Reilly PF, Timpson NJ, Kaakinen M, Laitinen J, Haukka J, Pillas D, Tzoulaki I, Molitor J, Hoggart C, Coin LJ, Whittaker J, Pouta A, Hartikainen AL, Freimer NB, Widen E, Peltonen L, Elliott P, McCarthy MI, Jarvelin MR. Genetic determinants of height growth assessed longitudinally from infancy to adulthood in the northern Finland birth cohort 1966. PLoS Genet. 2009 Mar 1 ; 5(3):e1000409. Abstract

View all comments by David Collier

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Michael O'Donovan, SRF AdvisorNick CraddockMichael Owen (SRF Advisor)
Submitted 9 July 2009
Posted 9 July 2009

Some commentators in their reflections take a rather negative view on what has been achieved through the application of GWAS technology to schizophrenia and psychiatric disorders more generally. We strongly disagree with this position. Below, we give examples of a number of statements that can be made about the aetiology of schizophrenia and bipolar disorder that could not be made at high levels of confidence even two years ago that are based upon evidence deriving from the application of GWAS.

1. We know with confidence that the role of rare copy number variants in schizophrenia is not limited to 22q11DS (VCFS) (reviewed recently in O’Donovan et al., 2009). We do not yet know how much of a contribution, but we know the identity of an increasing number of these. Most span multiple genes so it may prove problematic as it has in 22q11DS to identify the relevant molecular mechanisms. However, for one locus, the CNVs are limited to a single gene: Neurexin1 (Kirov et al., 2008; Rujescu et al., 2009). Genetic findings are merely the start of the journey to a deeper biological understanding, but no doubt many neurobiological researchers have already embarked on that journey in respect of neurexin1.

2. Although we have argued in this forum that some of the major pre-GWAS findings in schizophrenia very likely reflect true susceptibility genes (DTNBP1, NRG1, etc), we now have at least 4 novel loci where the evidence is more definitive (ZNF804A, MHC, NRGN, TCF4), (O’Donovan et al., 2008a; ISC, 2009; Shi et al., 2009; Stefansson et al., 2009) and two novel loci (Ferreira et al., 2008) in bipolar disorder (ANK3 and CACNA1C), at least one of which (CACNA1C) additionally confers risk of schizophrenia (Green et al., 2009). This is obviously a small part of the picture, but it is certainly better than no picture at all. These findings also offer a much more secure foundation than the earlier findings upon which to build follow up studies, for example brain imaging, and cognitive phenotypes (Esslinger et al., 2009), and even candidate gene studies. We would not regard the first convincing evidence that altered calcium channel function is a primary aetiological event in at least some forms of psychosis as a trivial gain in knowledge.

3. We can say with confidence that common alleles of small effect are abundant in schizophrenia, and that they contribute to a substantial part of the population risk (ISC, 2009). Identifying any one of these at stringent levels of statistical significance may be challenging in terms of sample sizes. As we have pointed out before, merging multiple datasets may indeed obscure some true associations because of sometimes unpredictable relationships between risk alleles and those assayed indirectly in GWAS studies (Moskvina and O’Donovan, 2007). Nevertheless, that many of the same alleles are overrepresented in multiple independent GWAS datasets from different countries (ISC, 2009) means that larger samples offer the prospect of identifying many more of these. This is not to say that large samples are the only approach; genetic heterogeneity may well underpin some aspects of clinical heterogeneity (Craddock et al., 2009a). However, with the exception of individual large pedigrees, it is not yet evident which type of clinical sample one should base a small scale study on. It should also be self-evident that the analysis of multiple samples, each with a different phenotypic structure, will pose major problems in respect of multiple testing and subsequent replication. Moreover, ascertaining special samples that represent putative subtypes of the clinical (and endophenotypic) spectrum of psychosis will first require large samples to be carefully assessed and the relevant subjects extracted. Subsequently, downstream, evaluation of specific genotype-phenotype relationships will require the remainder of the clinical population to be genotyped in a suitably powered way to show that those effects are specific to some clinical features of the disorder. Increasingly, it is ascertainment and assessment that dominate the cost of GWAS studies so it is not clear this approach will achieve any economies. We must also remember that after a GWAS study, there remains the opportunity to look in a controlled manner for relatively specific associations in the context of the heterogeneous clinical picture. For example we are aware of a number of papers in development that will exploit the sorts of multi-locus tests reported by the ISC to refine diagnostics, and no doubt many other applications of this will emerge in the next year or so.

Critics should bear in mind that the GWAS data are not just there for the ‘headline’ genome-wide findings, but that the data will be available to mine for years to come. The findings reported to date are based on only the simplest analyses.

4. If it were the case that the thousands of SNPs of small effect were randomly distributed across biological systems, none being of more relevance to pathophysiology than another, identifying them would probably be a pointless endeavour. However, there is no reason to believe this will be the case. We have recently shown that in bipolar disorder, the GWAS signals are enriched in particular biological pathways (Holmans et al., 2009) and we also published strong evidence for a relatively selective involvement of the GABAergic system in schizoaffective disorder (Craddock et al., 2009b). We are aware of an as-yet unpublished independent sample with similar findings. We would not regard the first convincing evidence that altered GABA function is a primary aetiological event in at least some forms of psychosis as a trivial gain in knowledge.

Incidentally it is a common misconception that the identification of risk alleles of small effect necessarily confers no useful insights into pathogenesis and possible drug targets. For example, common alleles in PPARG and KCNJ11 have been robustly shown to confer risk to Type 2 diabetes (T2D) but with odds ratios in the region of only 1.14 (of similar magnitude to those revealed by GWAS of schizophrenia). PPARG encodes the target for the thiazolidinedione class of drugs used to treat T2D. KCNJ11 encodes part of the target for another class of diabetes drug, the sulphonylureas (Prokopenko et al., 2008). Moreover, studies of novel associated variants identified in T2D GWAS in healthy, non-diabetic, populations have demonstrated that for most, the primary effect on T2D susceptibility is mediated through deleterious effects on insulin secretion, rather than insulin action (Prokopenko et al., 2008). Further examples of insights into the biology of common diseases coming from the identification of loci of small effect are the implication of the complement system in age-related macular degeneration and autophagy in Crohn’s disease (Hirschhorn, 2009). Already, efforts are under way to translate the new recognition of the role of autophagy in Crohn’s disease into new therapeutic leads (Hirschhorn, 2009). Of course many of the loci identified in GWAS implicate genes whose functions are as yet largely or completely unknown, and determining those functions is a prerequisite of translating those findings. Nevertheless, we believe that the greatest benefits that will accrue from the continued discovery of risk loci through GWAS will come from the assembly of that information into novel disease pathways leading to novel therapeutic targets.

5. We can say with confidence that bipolar disorder and schizophrenia substantially overlap, at least in terms of polygenic risk (ISC, 2009). As clinicians, we do not regard that knowledge as a trivial achievement.

6. We can say with confidence from studies of CNVs that schizophrenia and autism share at least some risk factors in common (O’Donovan et al., 2009). We believe that is also an important insight.

The above are major achievements in what we expect to be a long but accelerating process of picking apart the origins of schizophrenia and other psychotic disorders. We do not think that any other research discipline in psychiatry has done more to advance that knowledge in the past 100 years.

Like that other common familial diseases, the genetics of schizophrenia and bipolar disorder is a “mixed economy” of common alleles of small effect and rare alleles of large and small effects, including CNVs. Those who are concerned at the cost of collecting large samples for GWAS studies must bear in mind that the robust identification of both types of mutation will require similarly large samples; we will just have to get used to that fact if we want to make progress. Collecting samples like this may be expensive, but as clinicians, we know those costs are trivial compared with the human and economic costs of psychotic disorders.

The question of phenotype definition is one which we have repeatedly addressed (Craddock et al., 2009a). Unquestionably, if we knew the true pathophysiological basis of these disorders, we could do better. The fact is that we don’t. Given that, it must be extremely encouraging that despite the problems, risk loci can be robustly identified by GWAS using samples defined by current diagnostic criteria. Moreover, armed with GWAS data in these heterogeneous populations, additional risk genes can be identified through strategies aimed at refining the phenotype that are not constrained by the current dichotomous view of the functional psychoses. We have shown at least one way in which this might be achieved without imposing a further burden of multiple testing (Craddock et al., 2009b), and have little doubt that others will emerge. We agree that approaches to phenotyping that more directly index underlying pathophysiology are highly appealing, and will ultimately be necessary for understanding the mechanistic relationships between gene and disorder. However, the two cardinal assumptions upon which the use of endophenotypes is predicated for gene discovery are questionable. First, there is little good evidence that putative endophenotypes are substantially simpler genetically than “exophenotypes” (Flint and Munafo, 2007). Second, there is rarely good evidence that the current crop of popular putative endophenotypes lie on the disease pathway, indeed there seems to be substantial pleiotropy in the genetics of complex traits, psychosis included (Prokopenko et al., 2008; O’Donovan et al., 2008b).

Finally, we reiterate that while only small parts of the heritability of any complex disorder have been accounted for, large-scale genetic approaches have been extremely successful in studies of non-psychiatric diseases (Manolio et al., 2008) and have led to substantial advances in our understanding of pathogenesis, even for diseases like Crohn’s disease where there was already prior knowledge of pathogenesis from other research methods (Mathew, 2008).

Psychiatry starts from a situation in which there is no robust prior knowledge of pathogenesis for the major phenotypes. Recent findings suggest that mental illness may be the medical field that will actually benefit most over the coming years from application of these powerful molecular genetic technologies.

References:
Craddock N, O'Donovan MC, Owen MJ. (2009a) Psychosis Genetics: Modeling the Relationship between Schizophrenia, Bipolar Disorder, and Mixed (or "Schizoaffective") Psychoses. Schizophrenia Bulletin 35(3):482-490. Abstract

Craddock N, Jones L, Jones IR, Kirov G, Green EK, Grozeva D, Moskvina V, Nikolov I, Hamshere ML, Vukcevic D, Caesar S, Gordon-Smith K, Fraser C, Russell E, Norton N, Breen G, St Clair D, Collier DA, Young AH, Ferrier IN, Farmer A, McGuffin P, Holmans PA, Wellcome Trust Case Control Consortium (WTCCC), Donnelly P, Owen MJ, O’Donovan MC. Strong genetic evidence for a selective influence of GABAA receptors on a component of the bipolar disorder phenotype. Molecular Psychiatry advanced online publication 1 July 2008; doi:10.1038/mp.2008.66. (b) Abstract

Esslinger C, Walter H, Kirsch P, Erk S, Schnell K, Arnold C, Haddad L, Mier D, Opitz von Boberfeld C, Raab K, Witt SH, Rietschel M, Cichon S, Meyer-Lindenberg A. (2009) Neural mechanisms of a genome-wide supported psychosis variant. Science 324(5927):605. Abstract

Ferreira MAR, O’Donovan MC, Meng YA, Jones IR, Ruderfer DM, Jones L, Fan J, Kirov G, Perlis RH, Green EK, Smoller JW, Grozeva D, Stone J, Nikolov I, Chambert K, Hamshere ML, Nimgaonkar V, Moskvina V, Thase ME, Caesar S, Sachs GS, Franklin J, Gordon-Smith K, Ardlie KG, Gabriel SB, Fraser C, Blumenstiel B, Defelice M, Breen G, Gill M, Morris DW, Elkin A, Muir WJ, McGhee KA, Williamson R, MacIntyre DJ, McLean A, St Clair D, VanBeck M, Pereira A, Kandaswamy R, McQuillin A, Collier DA, Bass NJ, Young AH, Lawrence J, Ferrier IN, Anjorin A, Farmer A, Curtis D, Scolnick EM, McGuffin P, Daly MJ, Corvin AP, Holmans PA, Blackwood DH, Wellcome Trust Case Control Consortium (WTCCC), Gurling HM, Owen MJ, Purcell SM, Sklar P and Craddock NJ. (2008) Collaborative genome-wide association analysis of 10,596 individuals supports a role for Ankyrin-G (ANK3) and the alpha-1C subunit of the L-type voltage-gated calcium channel (CACNA1C) in bipolar disorder. Nature Genetics 40:1056-1058. Abstract

Flint J, Munafò MR. (2007) The endophenotype concept in psychiatric genetics. Psychological Medicine 37(2):163-180. Abstract

Green EK, Grozeva D, Jones I, Jones L, Kirov G, Caesar S, Gordon-Smith K, Fraser C, Forty L, Russell E, Hamshere ML, Moskvina V, Nikolov I, Farmer A, McGuffin P, Wellcome Trust Case Consortium, Holmans PA, Owen MJ, O’Donovan MC and Craddock N. (2009) Bipolar disorder risk allele at CACNA1C also confers risk to recurrent major depression and to schizophrenia. Molecular Psychiatry (in press).

Hirschhorn JN. (2009) Genomewide association studies--illuminating biologic pathways. New England Journal of Medicine 360(17):1699-1701. Abstract

Holmans P, Green E, Pahwa J, Ferreira M, Purcell S, Sklar P, Owen M, O’Donovan M, Craddock N. Gene ontology analysis of GWAS datasets provide insights into the biology of bipolar disorder. The American Journal of Human Genetics 2009 Jun 17 [Epub ahead of print]. International Schizophrenia Consortium. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009 Jul 1 [Epub ahead of print]. Abstract

Kirov G, Gumus D, Chen W, Norton N, Georgieva L, Sari M, O'Donovan MC, Erdogan F, Owen MJ, Ropers HH, Ullmann R. (2008) Comparative genome hybridization suggests a role for NRXN1 and APBA2 in schizophrenia. Human Molecular Genetics 17(3):458-465. Abstract

Manolio TA, Brooks LD, Collins FS. (2008) A HapMap harvest of insights into the genetics of common disease. Journal of Clinical Investigation 118(5):1590-1605. Abstract

Mathew CG. (2008) New links to the pathogenesis of Crohn disease provided by genome-wide association scans. Nature Review Genetics 9(1):9-14. Abstract

Moskvina V and O'Donovan MC. (2007) Detailed analysis of the relative power of direct and indirect association studies and the implications for their interpretation. Human Heredity 64(1):63-73. Abstract

O’Donovan MC, Kirov G, Owen MJ. (2008a) Phenotypic variations on the theme of CNVs. Nature Genetics 40(12):1392-1393. Abstract

O’Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, Nikolov I, Hamshere M, Carroll L, Georgieva L, Dwyer S, Holmans P, Marchini JL, Spencer C, Howie B, Leung H-T, Hartmann AM, Möller H-J, Morris DW, Shi Y, Feng G, Hoffmann P, Propping P, Vasilescu C, Maier W, Rietschel M, Zammit S, Schumacher J, Quinn EM, Schulze TG, Williams NM, Giegling I, Iwata N, Ikeda M, Darvasi A, Shifman S, He L, Duan J, Sanders AR, Levinson DF, Gejman P, Molecular Genetics of Schizophrenia Collaboration , Cichon S, Nöthen MM, Gill M, Corvin A, Rujescu D, Kirov G, Owen MJ. (2008b) Identification of novel schizophrenia loci by genome-wide association and follow-up. Nature Genetics 40:1053-1055. Abstract

O’Donovan MC, Craddock N, Owen MJ. Genetics of psychosis; Insights from views across the genome. Human Genetics 2009 Jun 12 [Epub ahead of print]. Abstract

Prokopenko I, McCarthy MI, Lindgren CM. (2008) Type 2 diabetes: new genes, new understanding. Trends in Genetics 24(12):613-621. Abstract

Rujescu D, Ingason A, Cichon S, Pietiläinen OP, Barnes MR, Toulopoulou T, Picchioni M, Vassos E, Ettinger U, Bramon E, Murray R, Ruggeri M, Tosato S, Bonetto C, Steinberg S, Sigurdsson E, Sigmundsson T, Petursson H, Gylfason A, Olason PI, Hardarsson G, Jonsdottir GA, Gustafsson O, Fossdal R, Giegling I, Möller HJ, Hartmann AM, Hoffmann P, Crombie C, Fraser G, Walker N, Lonnqvist J, Suvisaari J, Tuulio-Henriksson A, Djurovic S, Melle I, Andreassen OA, Hansen T, Werge T, Kiemeney LA, Franke B, Veltman J, Buizer-Voskamp JE; GROUP Investigators, Sabatti C, Ophoff RA, Rietschel M, Nöthen MM, Stefansson K, Peltonen L, St Clair D, Stefansson H, Collier DA. (2009) Disruption of the neurexin 1 gene is associated with schizophrenia. Human Molecular Genetics 18(5):988-996. Abstract

Shi J, Levinson DF, Duan J, Sanders AR, Zheng Y, Pe'er I, Dudbridge F, Holmans PA, Whittemore AS, Mowry BJ, Olincy A, Amin F, Cloninger CR, Silverman JM, Buccola NG, Byerley WF, Black DW, Crowe RR, Oksenberg JR, Mirel DB, Kendler KS, Freedman R & Gejman PV. (2009) Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature doi:10.1038/nature08192. Abstract

Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon S, Rujescu D, Werge T, Pietiläinen OPH, Mors O, Mortensen PB, Sigurdsson E, Gustafsson O, Nyegaard M, Tuulio-Henriksson A, Ingason A, Hansen T, Suvisaari J, Lonnqvist J, Paunio T, Børglum AD, Hartmann A, Fink-Jensen A, Nordentoft M, Hougaard D, Norgaard-Pedersen B, Böttcher Y, Olesen J, Breuer R, Möller H-J, Giegling I, Rasmussen HB, Timm S, Mattheisen M, Bitter I, Réthelyi JM, Magnusdottir BB, Sigmundsson T, Olason P, Masson G, Gulcher JR, Haraldsson M, Fossdal R, Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S, Franke B, Strengman E, Kiemeney LA, GROUP†, Melle I, Djurovic S, Abramova L, Kaleda V, Sanjuan J, de Frutos R, Bramon E, Vassos E, Fraser G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need AC, Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM, Murray R, Kong A, Golimbet V, Carracedo A, Arango C, Costas J, Jönsson EG, Terenius L, Agartz I, Petursson H, Nöthen MM, Rietschel M, Matthews PM, Muglia P, Peltonen L, St Clair D, Goldstein DB, Stefansson K, Collier DA & Genetic Risk and Outcome in Psychosis (GROUP). (2009) Common variants conferring risk of schizophrenia. Nature doi:10.1038/nature08186. Abstract

View all comments by Michael O'Donovan
View all comments by Nick Craddock
View all comments by Michael Owen

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Kevin J. Mitchell
Submitted 9 July 2009
Posted 9 July 2009

GWAS Results: Is the Glass Half Full or 95 Percent Empty?
The publication of the latest schizophrenia GWAS papers represents the culmination of a tremendous amount of work and unprecedented cooperation among a large number of researchers, for which they should be applauded. In addition to the hope of finding new “schizophrenia genes,” GWAS have been described by some of the researchers involved as, more fundamentally, a stern test of the common variants hypothesis. Based on the meagre haul of common variants dredged up by these three studies and their forerunners, this hypothesis should clearly now be resoundingly rejected—at least in the form that suggests that there is a large, but not enormous, number of such variants, which individually have modest, but not minuscule, effects. There are no common variants of even modest effect.

However, Purcell and colleagues now argue for a model involving vast numbers of variants, each of almost negligible effect alone. The authors show that an aggregate score derived from the top 10-50 percent of a set of 74,000 SNPs from the association results in a discovery sample can predict up to 3 percent of the variance in a target group. Simply put, a set of putative “risk alleles” can be defined in one sample and shown, collectively, to be very slightly (though highly significantly in a statistical sense) enriched in the test sample, compared to controls. This is consistent across several different schizophrenia samples and even in two bipolar disorder samples. The authors go on to perform a set of control analyses that suggest that these results are not due to obvious population stratification or genotype rate effects (although effects at this level are obviously prone to cryptic artifacts).

If taken at face value, what do these results mean? They imply some kind of polygenic effect on risk, but of what magnitude? The answer to that depends on the interpretation of the additional simulations performed by the authors. They argue that the risk allele set inevitably contains very many false positives, which dilute the predictive power of the real positives hidden among them. Based on this logic, if we only knew which were the real variants to look at, then the variance explained in the target group would be much greater.

To try and estimate the magnitude of the effect of the polygenic load of “true risk” alleles, the authors conducted a series of simulations, varying parameters such as allele frequencies, genotype relative risks, and linkage disequilibrium with genotyped markers. They claim that these analyses converge on a set of models that recapitulate the observed data and that all converge on a true level of variance explained of around 34 percent, demonstrating a large polygenic component to the genetic architecture of schizophrenia.

These simulations adopt a level of statistical abstraction that should induce a healthy level of skepticism or at least reserved judgment on their findings. Most fundamentally, they rely explicitly for their calculations of the true variance on a liability-threshold model of the genetic architecture of schizophrenia. In effect, the “test” of the model incorporates the assumption that the model is correct.

The liability-threshold model is an elegant statistical abstraction that allows the application of the powerful statistics of normal distributions. Unfortunately, it suffers from the fact that it has no support whatsoever and makes no biological sense. First, there is no justification for assuming a normal distribution of “underlying liability,” whatever that term is taken to mean. Second, as usual when it is invoked, the nature of this putative threshold is not explained, though it surreptitiously implies some form of very strong epistasis (to explain the difference in risk between someone with x liability alleles and someone else with x+1 alleles). If this model is not correct, then these simulations are fatally flawed.

Even if the model were correct, the calculations are far from convincing. From a starting set of 560 models, the authors arrive at seven that are consistent with the observed degree of prediction in the target samples. According to the authors, the fact that these seven models converge on a small range of values for the underlying variance explained by the markers is evidence that this value (around 34 percent) represents the true situation. What is not highlighted is the fact that the values for the actual additive genetic variance (taking into account incomplete linkage disequilibrium between the markers and the assumed causal variants) across these models ranges from 34 percent to 98 percent and that the number of SNPs assumed to be having an effect ranges from 4,625 to 74,062. This extreme variation in the derived models hardly inspires confidence in the authors’ claim that their data “strongly support a polygenic basis to schizophrenia that (1) involves common SNPs, [and] (2) explains at least one-third of the total variation in liability.” (italics added)

From a more theoretical perspective, it should be noted that a polygenic model involving thousands of common variants of tiny effect cannot explain and will not contribute to the observed heightened familial relative risks. Such risk can only be explained by a variant of large effect or by an oligogenic model involving at most two to three loci (Bodmer and Bonilla, 2008; Hemminki et al., 2008; Mitchell and Porteous, in preparation). It seems much more likely that the observed predictive power in the target samples represents a modest “genetic background” effect, which could influence the penetrance and expressivity of rare, causal mutations. However, if the point of GWAS is to find genetic variants that are predictive of risk or that shed light on the pathogenic mechanisms of the disease, then clearly, even if such variants can be found by massively increasing sample sizes, their identification alone would not achieve or even appreciably contribute to either of these goals.

References:

Hemminki K, Försti A, Bermejo JL. The “common disease-common variant” hypothesis and familial risks. PLoS ONE. 2008 Jun 18;3(6):e2504. Abstract

Bodmer W, Bonilla C. Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet. 2008 Jun;40(6):695-701. Abstract

View all comments by Kevin J. Mitchell

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  David J. Porteous, SRF Advisor
Submitted 9 July 2009
Posted 10 July 2009
  I recommend the Primary Papers

Thumbs up or down on schizophrenia GWAS?
The triumvirate of schizophrenia GWAS studies just published in Nature gives cause for thought, and bears close scrutiny and reflection. To my reading, these three studies individually and collectively lead to an unambiguous conclusion—there is a lot of genetic heterogeneity and not one individual variant of common ancient origin accounts for a significant fraction of the genetic liability. To put it another way, there is no ApoE equivalent for schizophrenia. Strong past claims for ZNF804A and others look to have fallen by the statistical wayside. Putting the results of all three studies together does appear to provide support for a long known, pre-GWAS association with HLA, but otherwise it is hard to give a strong "thumbs up" to any specific result, not least because of the lack of replication between studies. The results are nevertheless important because the common disease, common variant model, on which GWAS are based and the associated cost justified, is strongly rejected as the main contributor to the genetic variance.

The ISC proposes a highly polygenic model with thousands of variants having an additive effect on both schizophrenia and bipolar disorder. I find no fault with their evidence, but its meaning and interpretation remains speculative. Simply consider the fact that SNPs carefully selected to tag half the genome account for about a third of the variance. It follows that the lion's share has gone undetected and will, by design and limitation, remain impervious to the GWAS strategy.

Part of the GWAS appeal is that the genotyping is technically facile and it is easier to collect lots of cases than it is families, but for as long as a diagnosis of schizophrenia or BP depends upon DSM-IV or ICD-10 classification, then diagnostic uncertainty will have a major effect on true power and validity of statistical association, both positive or negative. Indeed, the longstanding evidence from variable psychopathology amongst related individuals, the recent epidemiology evidence for shared genetic risk for schizophrenia and BP, and the further evidence supporting this from the ISC GWAS, all suggest that we should be returning more to family-based studies as a strategy to reduce genetic heterogeneity and find explanatory genetic variants. Plainly, adding ever more uncertainty through ever larger sample sizes is neither smart nor efficient.

I would certainly give the thumbs up to the full and unencumbered release of the primary data to the community as a whole, as this could usefully recoup some of the GWAS investment. It would facilitate a range of statistical and bioinformatics analyses and, who knows, there might be hidden nuggets of statistical support for independent genetic and biological studies.

View all comments by David J. Porteous

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Sagiv Shifman
Submitted 11 July 2009
Posted 11 July 2009

The main question that arises from the three large genomewide association studies published in Nature is, What should we do next?

One important way forward would be to follow up the association findings in the MHC region. We need to understand the biological mechanism underlying this association. If the association signal is indeed related to infectious diseases, this line of inquiry may lead to the highly desired development of a treatment that might prevent the diseases in some cases.

One possible explanation for the association between schizophrenia and the MHC region (6p22.1) is that infection during pregnancy leads to disturbances of fetal brain development and increases the risk of schizophrenia later in life. A possible test for the theory of infectious diseases as risk factors for schizophrenia would be to study the associated SNPs in 6p22.1 in fathers and mothers of subjects with schizophrenia relative to parents of control subjects. If the 6p22.11 region is related to the tendency of mothers to be infected by viruses during pregnancy, we would expect the SNPs in 6p22.1 to be most strongly associated with being a mother to a subject with schizophrenia.

Another broader and more complicated part of the question is: What would be the best strategy for continued study of the genetic causes of schizophrenia? There shouldn’t be only one way to proceed. Testing samples that are 10 times larger seems likely to lead to the identification of more genes, but with much smaller effect size. Testing the association of common variants with schizophrenia is unlikely to lead to the development of genetic diagnostic tools in the near future. If we want to understand the biology of the disease, it might be easier to concentrate our efforts on the identification of rare inherited and non-inherited variants with large effect on the phenotype. Such rare variants are easier to model in animals (relative to common variants with very small functional effect) and might even account for a larger proportion of cases.

View all comments by Sagiv Shifman

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Alan BrownPaul Patterson
Submitted 17 July 2009
Posted 17 July 2009

The three companion papers in this week’s issue of Nature, in our view, support the case for investigating interaction between susceptibility genes and infectious exposures in schizophrenia. We and others have argued previously that genetic studies conducted in isolation from environmental factors, and studies of environmental influences in the absence of genetic data, are necessarily limited. Maternal influenza, rubella, toxoplasmosis, herpes simplex virus, and other infections have each been associated with an increased risk of schizophrenia, with effect sizes ranging from twofold to over fivefold. While these epidemiologic findings clearly require replication in independent cohorts, two new developments provide further support for the hypothesis. First, a growing number of animal studies of maternal immune activation have documented behavioral and brain phenotypes in offspring that are analogous to findings from clinical research in schizophrenia, and these findings are mediated in large part by specific cytokines (Meyer et al., 2009; Patterson, 2008). Second, recent evidence indicates that maternal infection is also related to deficits in executive and other cognitive functions and neuropathology thought to arise from disruptions in brain development (Brown et al., 2009a; Brown et al., 2009b).

While the MHC region contains genes not involved in the immune system, in light of the epidemiologic findings on maternal infection, it is intriguing to see that this region is once more implicated in genetic studies of schizophrenia as the importance of this region in the response to infectious insults cannot be ignored. Although it is heartening to see that the potential implications of these findings for infectious etiologies were raised in the article from the SGENE plus group, an analysis of the frequency of SNPs by season of birth falls well short of the type of research that will yield definitive findings on the relationships between susceptibility genes and infectious insults. Hence, we advocate a strategy aimed at large scale genetic analyses of schizophrenia cases using birth cohorts with infectious exposures documented from prospectively collected biological samples from the prenatal period. If the schizophrenia-related pathogenic mechanisms by which MHC-related genetic variants operate involve interactions with prenatal infection, we would expect that studies of gene-infection interaction will yield larger effect sizes than those found in these new papers. The evidence from these papers and the epidemiologic literature should also facilitate narrowing of the number of candidate genes to be tested for interactions with infectious insults, thereby ameliorating the potential for type I error due to multiple comparisons.

References:

Meyer U, Feldon J, Fatemi SH. In-vivo rodent models for the experimental investigation of prenatal immune activation effects in neurodevelopmental brain disorders. Neurosci Biobehav Rev . 2009 Jul 1; 33(7):1061-79. Abstract

Patterson PH. Immune involvement in schizophrenia and autism: Etiology, pathology and animal models. Behav Brain Res. 2008 Dec 24; Abstract

Brown AS, Vinogradov S, Kremen WS, Poole JH, Deicken RF, Penner JD, McKeague IW, Kochetkova A, Kern D, Schaefer CA. Prenatal exposure to maternal infection and executive dysfunction in adult schizophrenia. Am J Psychiatry . 2009a Jun 1 ; 166(6):683-90. Abstract

Brown AS, Deicken RF, Vinogradov S, Kremen WS, Poole JH, Penner JD, Kochetkova A, Kern D, Schaefer CA. Prenatal infection and cavum septum pellucidum in adult schizophrenia. Schizophr Res . 2009b Mar 1 ; 108(1-3):285-7. Abstract

View all comments by Alan Brown
View all comments by Paul Patterson

Related News: Largest GWAS Analysis to Date Offers Only Two New Candidate Genes

Comment by:  Javier Costas
Submitted 17 July 2009
Posted 17 July 2009
  I recommend the Primary Papers

Two hundred years after Darwin’s birth and 150 years after the publication of On the Origin of Species, these three papers in Nature show the important role of natural selection in shaping the genetic architecture of schizophrenia susceptibility. If we compare the GWAS results for schizophrenia with those obtained for other diseases, it seems that there are less common risk alleles and/or lower effect sizes in schizophrenia than in many other complex diseases (see, for instance, the online catalog of published GWAS at NHGRI). This fact strongly suggests that negative selection limits the spread of susceptibility alleles, as expected due to the decreased fertility of schizophrenic patients.

Interestingly, the MHC region may be an exception. This region represents a classical example of balancing selection, i.e., the presence of several variants at a locus maintained in a population by positive natural selection (Hughes and Nei, 1988). In the case of the MHC, this balancing selection seems to be related to pathogen resistance or MHC-dependent mating choice. Therefore, the presence of common schizophrenia susceptibility alleles at this locus might be explained by antagonistic pleiotropic effects of alleles maintained by natural selection.

If negative selection limits the spread of schizophrenia risk alleles, most of the genetic susceptibility to schizophrenia is likely due to rare variants. Resequencing technologies will allow the identification of many of these variants in the near future. In the meantime, it would be interesting to focus our attention on non-synonymous SNPs at low frequency. Based on human-chimpanzee comparisons and human sequencing data, Kryukov et al. (2008) have shown that a large fraction of de novo missense mutations are mildly deleterious (i.e., they are subject to weak negative selection) and therefore they can still reach detectable frequencies. Assuming that most of these mildly deleterious alleles may be detrimental (i.e., they confer risk for disease) the authors conclude that numerous rare functional SNPs may be major contributors to susceptibility to common diseases Kryukov et al., 2008. Similar conclusions were obtained by the analysis of the relative frequency distribution of non-synonymous SNPs depending on their probability to alter protein function (Barreiro et al., 2008; Gorlov et al., 2008). As shown by Evans et al. (2008), genomewide scans of non-synonymous SNPs might complement GWAS, being able to identify rare non-synonymous variants of intermediate penetrance not detectable by current GWAS panels.

References:

Barreiro LB, Laval G, Quach H, Patin E, Quintana-Murci L (2008) Natural selection has driven population differentiation in modern humans. Nat Genet 40: 340-5. Abstract

Evans DM, Barrett JC, Cardon LR (2008) To what extent do scans of non-synonymous SNPs complement denser genome-wide association studies? Eur J Hum Genet 16: 718-23. Abstract

Gorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amos CI (2008) Shifting paradigm of association studies: value of rare single-nucleotide polymorphisms. Am J Hum Genet 82: 100-12. Abstract

Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335: 167-70. Abstract

Kryukov GV, Pennacchio LA, Sunyaev SR (2007) Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am J Hum Genet 80: 727-39. Abstract

View all comments by Javier Costas

Related News: Chromosomal Mishaps in Autism Harbor Schizophrenia Candidate Genes

Comment by:  Ben Pickard
Submitted 23 May 2012
Posted 24 May 2012

The paper by Talkowski and colleagues describes the application of cutting edge genomics techniques to the molecular characterisation of multiple balanced chromosomal abnormalities (BCAs) linked to autism, autism spectrum disorders, and general neurodevelopmental disorders. In a single publication it has probably assigned more candidate genes than the entire conventional cytogenetic output from schizophrenia and autism in the preceding 15 years.

The authors carry out a great deal of complementary genomic analyses which add to the strength of their argument that these genes are indeed causally involved in illness. Without these additional data there would be one potential criticism of the paper in that the same power of analysis was not applied to BCAs in healthy controls. This is an important ascertainment issue because previous studies have not only identified disrupted genes in the healthy population (Baptista et al., 2005) but also shown that CNVs deregulating specific genes may only show an increased—as opposed to exclusive—representation in the ill population.

The observed overlaps between some of the identified BCA genes in ASD/neurodevelopmental disorders and those identified in GWAS studies of schizophrenia and bipolar disorder is fascinating but may be a double-edged sword. On the one hand, support for rare genetic contributors (CNVs/sequence variants/BCAs) to complex genetic disorders has often been drawn from those that are co-incident between studies. In that respect, this study is remarkable for highlighting the same genes from methods that detect very different mutation types. I’m genuinely surprised that there appears to be a convergence of ancient (read subject to evolutionary selection/population effects) and recent (meaning random) mutations. On the other hand, there is the disconcerting possibility that schizophrenia GWAS are only powered to detect the causes of blunt neurodevelopmental disturbances (which are perhaps less sensitive to issues of diagnostic categorisation) and not the fine-grained genetic hits that determine a precise clinical endpoint. If this is the case then we could end up with a situation where the genotypic distance between disorders is apparently much less than the phenotypic distance. This is most likely an extreme outcome that will be remedied once the genomic analysis of complex genetic disorders is able to factor in the composite effects of BCAs, CNVs, rare SNPs, and common SNPs—at the level of the single individual, and perhaps conditioned on the presence of big neurodevelopmental hits.

Quite logically, the presence of genes spanning diagnoses has been explained in terms of shared predisposition derived from early neurodevelopmental insults that are subsequently pushed down diagnostic pathways by other genetic or environmental factors. However, this assumption needs formal testing. The problem is reminiscent of the debate that circled the early use of constitutive mouse knockouts: how is it possible to disentangle developmental from adult functional phenotypes in a null? The advent of inducible Cre-LoxP technologies allowed that question to be directly addressed and may be the means to test the neurodevelopmental contribution of diagnosis-spanning candidate genes such as TCF4.

Could the approach detailed in this paper be applied directly to schizophrenia? It would certainly add substantially to the ‘confirmed’ gene list and would detect any reciprocal relationships with ASD/neurodevelopmental disorders. One issue is that ASD appears to have a higher overall incidence of chromosomal and genomic structural rearrangements than schizophrenia, but perhaps the greater question is availability of an appropriate sample set. The concerted cytogenetic screening that took place in Scotland coupled with an ability to cross-reference these findings with incidence of psychiatric disorder was instrumental in the discovery of DISC1 and other genes in Scotland (Muir et al., 2008) but this resource is now largely exhausted of relevant BCAs. To my knowledge, the Danish registry represents the best bet for such an approach to succeed for schizophrenia (Bache et al., 2006).

References:

Baptista J, Prigmore E, Gribble SM, Jacobs PA, Carter NP, Crolla JA. Molecular cytogenetic analyses of breakpoints in apparently balanced reciprocal translocations carried by phenotypically normal individuals. Eur J Hum Genet. 2005 Nov;13(11):1205-12. Abstract

Muir WJ, Pickard BS, Blackwood DH. Disrupted-in-Schizophrenia-1. Curr Psychiatry Rep. 2008 Apr;10(2):140-7. Abstract

Bache I, Hjorth M, Bugge M, Holstebroe S, Hilden J, Schmidt L, Brondum-Nielsen K, Bruun-Petersen G, Jensen PK, Lundsteen C, Niebuhr E, Rasmussen K, Tommerup N. Systematic re-examination of carriers of balanced reciprocal translocations: a strategy to search for candidate regions for common and complex diseases. Eur J Hum Genet. 2006 Apr;14(4):410-7. Abstract

View all comments by Ben Pickard

Related News: Chromosomal Mishaps in Autism Harbor Schizophrenia Candidate Genes

Comment by:  Patrick Sullivan, SRF AdvisorJin Szatkiewicz
Submitted 29 May 2012
Posted 29 May 2012
  I recommend the Primary Papers

In this exceptional paper, the authors combined new technology with old-school genomics to deliver convergent data about the genomic regions that predispose to neuropsychiatric disorders. The first goal of psychiatric genetics is to identify the “parts list,” an enumeration of the genes and genetic loci whose alteration clearly and unequivocally alters risk. The results of this intriguing paper connect rare and powerful genomic disruptions with loci identified via common variant genomewide association screens.

A classical approach in human genetics is to study affected individuals with balanced translocations. Using next-generation sequencing, these authors identified the precise locations of 38 rare balanced chromosomal abnormalities in subjects with neurodevelopmental disorders. They identified 33 disrupted genes, of which 22 were novel risk loci for autism and neurodevelopmental disorders. The other disrupted genes included many that had previously been identified by genomic searches for rare variation and common variation (e.g., AUTS2, CHD8, TCF4, and ZNF804A).

The authors then sought secondary genomic support for disease association with these 33 risk loci by analyzing a large collection of psychiatric GWAS data. They found an increased burden of copy number variants (CNVs) among cases as well as a significant enrichment of common risk alleles among both autism and schizophrenia cases. This research suggests that autism and neurodevelopmental disorders may have commonalities with psychiatric disorders such as schizophrenia at the molecular level, underscoring the complexity of genetic contribution to these conditions.

CNVs discovered from microarrays are mainly large, rare CNVs spanning multiple genes. Exome sequencing is limited to coding regions of the genome. In contrast, as illustrated in Talkowski et al. (2012), it is possible to identify individual lesions with nucleotide resolution in both coding and non-coding regions. Thus, this research suggests that sequencing individuals with pathogenic balanced translocations could provide a complementary strategy for mutation identification and gene discovery.

The experimental procedures were technically well done; all BCA breakpoints were confirmed by PCR and capillary sequencing. In seeking the secondary genomic support, the authors were keen on evaluating and eliminating the possibility for any confounding factors that may cause spurious association. For example, CNV burden analysis was conducted with respect to differential sensitivities from microarrays, and all results remained robust to various subset analyses and to one million simulations designed to establish empirical significance. To examine the potential for spurious enrichment of common risk alleles, the authors additionally conducted identical analysis in phenotype-permuted datasets from well-powered GWAS data for schizophrenia and autism as well as in well-powered GWAS data for eight unrelated traits, and therefore eliminated unforeseen confounders.

Impressively, many of the loci identified here now have convergent genomic results with support across multiple different samples and technical approaches. For example, TCF4 harbors common variation identified via GWAS, a Mendelian disorder, and now a gene disruption. These convergent genomic results markedly increase confidence that TCF4 is truly in the “parts list” for neurodevelopmental disorders. In contrast, there remain multiple questions about the genomic evidence for DISC1, where such convergence has not been achieved.

This paper also provides important results relevant to resolving the rare “versus” common variation debate. This appears to be a false dichotomy where, often, both rare and common variations contribute to the parts lists for these disorders.

View all comments by Patrick Sullivan
View all comments by Jin Szatkiewicz

Related News: Chromosomal Mishaps in Autism Harbor Schizophrenia Candidate Genes

Comment by:  Bernard Crespi
Submitted 29 May 2012
Posted 29 May 2012
  I recommend the Primary Papers

Balanced chromosomal abnormalities (BCAs) provide extremely useful alterations for linking of specific loci with psychiatric conditions, because they exert penetrant effects and localize to specific genes. The recent study by Talkowski et al. (2012) used direct sequencing of breakpoints, based on 38 subjects, to generate a set of genes with putative links to different neurodevelopmental disorders, broadly construed as including autism spectrum disorders, intellectual disability, and/or developmental and other delays.

One of the most striking results from their study was the presence, in their set of breakpoint-altered genes, of five genes that have been associated from other work with schizophrenia and related psychotic-affective spectrum disorders (such as bipolar disorder and major depression), including TCF4, ZNF804A, PDE10A, GRIN2B, and ANK3. These results suggest, according to the authors, the presence of shared genetic etiology for ASD, schizophrenia, and other neurodevelopmental disorders (mainly developmental delays). The authors also show overlap of their gene list with results from CNV and GWAS of autism and schizophrenia, further suggesting genetic links between these two conditions.

Do these results mean that autism and schizophrenia share genetic risk factors? Perhaps, but also perhaps not. Two important caveats apply.

First, schizophrenia involves well-documented premorbidity, in a substantial proportion of cases, that centers on developmental, social, and language deficits and delays (e.g., Saracco-Alvarez et al., 2009; Gibson et al., 2010). In children, premorbidity to schizophrenia most commonly involves "negative" symptoms, including deficits in social interaction (Remschmidt et al., 1994; Tandon et al., 2009), which can overlap with symptoms of autism spectrum disorders (Goldstein et al., 2002; Sheitman et al., 2004; Tjordman, 2008; King and Lord, 2011). Males are more severely affected, as in autism (Sobin et al., 2001; Rapoport et al., 2009; Tandon et al., 2009). Schizophrenia mediated by CNVs, or BCAs, is likely to exhibit relatively high levels of premorbidity, due to the penetrant, syndromic, and deleterious nature of these alterations (Bassett et al., 2010; Vassos et al., 2010). A recent study by Sahoo et al. (Sahoo et al., 2011) provides evidence consistent with such premorbidity, in that of over 38,000 individuals (predominantly children) referred for developmental delay, intellectual disability, autism spectrum disorders, or multiple congenital anomalies, 704 exhibited one of seven CNVs (del 1q21.1, dup 1q21.1, del 15q11.2, del 15q13.3, dup 16p11.2, dup 16p13.11, and del 22q11.2) that have been statistically associated with schizophrenia in studies of adults (Levinson et al., 2011).

These findings suggest that the subjects in Talkowski et al. (Talkowski et al., 2012), (most of them children, for individuals with age data given) who harbor alterations to schizophrenia-associated genes may, in fact, be severely premorbid for schizophrenia. Diagnoses of ASD (commonly PDD-NOS) in such individuals may represent either false positives (Eliez, 2007 ; Feinstein and Singh, 2007), or true positives, with ASD as a developmental stage followed, in some individuals, by schizophrenia. This latter conceptualization considers autism as akin to childhood schizophrenia, a view which contrasts sharply with the classic criteria derived from Kanner (Kanner, 1943), Asperger (1991) and Rutter (Rutter, 2000, Rutter, 1972, Rutter, 1978), who consider autism as a lifelong condition present from early childhood. Of course, diagnosing premorbidity to schizophrenia as such is challenging, but if any data can help, it is data from highly penetrant alterations such as CNVs and BCAs, as well as from biological and neurological (rather than just behavioral) phenotypes.

Second, association to an overlapping set of genes need not make two disorders similar, or similar in their genetic etiology. For example, as noted by Talkowski et al. (Talkowski et al., 2012), variation in TCF4 has been associated with both Pitt-Hopkins syndrome and schizophrenia, but these conditions show essentially no overlap in phenotypes. Similar considerations apply to CACNA1C, linked to the autism-associated Timothy syndrome (via an apparent gain of function) as well as to schizophrenia and bipolar disorder. A key to sorting out the huge clinical and genetic heterogeneity in autism, and in schizophrenia, is subsetting of cases by similarity in alterations to pathways and phenotypes. Lumping of autism with schizophrenia, based on overlap in risk loci without consideration of the nature of the overlap, will make such subsetting all the more difficult.

Data on genes disrupted by balanced translocations are tremendously useful, but their usefulness will, as for other data such as CNVs, be circumscribed by diagnostic considerations, especially when the subjects are children. Bearing in mind the possibility that some childhood diagnoses may represent false positives, and that overlap in genes need not mean overlap in causation, should help in moving the study of both autism and schizophrenia forward.

References:

Asperger H; translated and annotated by Frith U (1991) [1944]. Autistic psychopathy' in childhood. In Frith, U. Autism and Asperger syndrome. Cambridge University Press. pp. 37-92.

Bassett AS, Scherer SW, Brzustowicz LM. Copy number variations in schizophrenia: critical review and new perspectives on concepts of genetics and disease. Am J Psychiatry. 2010;167(8):899-914. Abstract

Eliez S. Autism in children with 22q11.2 deletion syndrome. J Am Acad Child Adolesc Psychiatry. 2007;46(4):433-4. Abstract

Feinstein C, Singh S. Social phenotypes in neurogenetic syndromes. Child Adolesc Psychiatr Clin N Am. 2007;16(3):631-47. Abstract

Gibson CM, Penn DL, Prinstein MJ, Perkins DO, Belger A. Social skill and social cognition in adolescents at genetic risk for psychosis. Schizophr Res. 2010;122(1-3):179-84. Abstract

Kanner L. 1968;2:217–250. Abstract

King BH, Lord C. Is schizophrenia on the autism spectrum? Brain Res. 2011;1380:34-41. Abstract

Levinson DF, Duan J, Oh S, Wang K, Sanders AR, Shi J, et al., Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. Am J Psychiatry. 2011;168(3):302-16. Abstract

Rapoport J, Chavez A, Greenstein D, Addington A, Gogtay N. Autism spectrum disorders and childhood-onset schizophrenia: clinical and biological contributions to a relation revisited. J Am Acad Child Adolesc Psychiatry. 2009;48(1):10-8. Abstract

Remschmidt HE, Schulz E, Martin M, Warnke A, Trott GE. Childhood-onset schizophrenia: history of the concept and recent studies. Schizophr Bull. 1994;20(4):727-45. Abstract

Rutter ML. Relationships between child and adult psychiatric disorders. Some research considerations. Acta Psychiatr Scand. 1972;48(1):3-21. Abstract

Rutter M. Diagnosis and definition of childhood autism. J Autism Child Schizophr. 1978;8(2):139-61. Abstract

Rutter M. Genetic studies of autism: from the 1970s into the millennium. J Abnorm Child Psychol. 2000;28(1):3-14. Abstract

Saracco-Alvarez R, Rodríguez-Verdugo S, García-Anaya M, Fresán A. Premorbid adjustment in schizophrenia and schizoaffective disorder. Psychiatry Res. 2009;165(3):234-40. Abstract

Sahoo T, Theisen A, Rosenfeld JA, Lamb AN, Ravnan JB, Schultz RA, et al., Copy number variants of schizophrenia susceptibility loci are associated with a spectrum of speech and developmental delays and behavior problems. Genet Med. 2011; 13(10):868-80. Abstract

Sheitman BB, Kraus JE, Bodfish JW, Carmel H. Are the negative symptoms of schizophrenia consistent with an autistic spectrum illness? Schizophr Res. 2004;69(1):119-20. Abstract

Sobin C, Blundell ML, Conry A, Weiller F, Gavigan C, Haiman C, et al., Early, non-psychotic deviant behavior in schizophrenia: a possible endophenotypic marker for genetic studies. Psychiatry Res. 2001;101(2):101-13. Abstract

Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, Ernst C, Hanscom C, Rossin E, Lindgren AM, Pereira S, Ruderfer D, Kirby A, Ripke S, Harris DJ, Lee JH, Ha K, Kim HG, Solomon BD, Gropman AL, Lucente D, Sims K, Ohsumi TK, Borowsky ML, Loranger S, Quade B, Lage K, Miles J, Wu BL, Shen Y, Neale B, Shaffer LG, Daly MJ, Morton CC, Gusella JF. Sequencing Chromosomal Abnormalities Reveals Neurodevelopmental Loci that Confer Risk across Diagnostic Boundaries. Cell. 2012;149(3):525-37. Abstract

Tandon R, Nasrallah HA, Keshavan MS. Schizophrenia, "just the facts" 4. Clinical features and conceptualization. Schizophr Res. 2009;110(1-3):1-23. Abstract

Tjordman S Reunifying autism and early-onset schizophrenia in terms of social communication disorders. Behav Brain Sci. 2008;31(3):278-9.

Vassos E, Collier DA, Holden S, Patch C, Rujescu D, St Clair D, et al., Penetrance for copy number variants associated with schizophrenia. Hum Mol Genet. 2010;19(17):3477-81. Abstract

View all comments by Bernard Crespi

Related News: Exome Sequencing Hints at Prenatal Genes in Schizophrenia

Comment by:  Sven CichonMarcella RietschelMarkus M. Nöthen
Submitted 5 October 2012
Posted 5 October 2012

The new exome sequencing study by Xu et al. confirms previous results by the same research group (Xu et al., 2011) and by an independent group (Girard et al., 2011) that a significantly higher frequency of protein-altering de novo single nucleotide variants (SNVs) and in/dels is found in sporadic patients with schizophrenia. It is certainly reassuring that this observation has now been confirmed in an independent and considerably larger sample (134 patient-parent trios and 34 control-parent trios).

A closer look also reveals differences between this study and the study by Girard et al.: Xu et al. do not find a significantly higher overall de novo mutation rate per base per generation when comparing schizophrenia and control trios (1.73 x 10-08 vs. 1.28 x 10-08). In contrast, the Girard study found 2.59 x 10-08 de novo mutations in schizophrenia trios as opposed to the 1.1 x 10-08 events reported in the general population by the 1000 Genomes Project. The larger sample size in the new study by Xu et al., however, suggests that their estimation of the de novo mutation rates may be more precise now.

What eventually seems to count is the quality of the de novo mutations in the sporadic schizophrenia patients. The function of the genes hit by the non-synonymous/deleterious (as defined by in-silico scores) mutations is diverse and shows similarity with functions reported for common risk genes for schizophrenia identified by GWAS. Interestingly, there is an overrepresentation of genes that are predominantly expressed during embryogenesis, strongly highlighting a possible effect of neurodevelopmental disturbances in the etiology of schizophrenia (and nicely supporting what has already been concluded from GWAS).

It would probably be very interesting to estimate the penetrance of such de novo mutations to get a feeling for their individual impact on the development of the disease. In the absence of a reasonable number of individuals with the same mutation, however, this will be a difficult task.

Another aspect that is missing in the current paper, but is accessible to investigation, is the frequency/quality of de novo mutations in trios with a family history of schizophrenia and comparison to the figures seen in the sporadic trios. That might (or might not) support the authors’ conclusion that de novo events play a strong role in sporadic cases (and not in familial cases).

References:

Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, Gogos JA, Karayiorgou M. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet . 2011 Sep ; 43(9):864-8. Abstract

Girard SL, Gauthier J, Noreau A, Xiong L, Zhou S, Jouan L, Dionne-Laporte A, Spiegelman D, Henrion E, Diallo O, Thibodeau P, Bachand I, Bao JY, Tong AH, Lin CH, Millet B, Jaafari N, Joober R, Dion PA, Lok S, Krebs MO, Rouleau GA. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet . 2011 Sep ; 43(9):860-3. Abstract

View all comments by Sven Cichon
View all comments by Marcella Rietschel
View all comments by Markus M. Nöthen

Related News: Exome Sequencing Hints at Prenatal Genes in Schizophrenia

Comment by:  Patrick Sullivan, SRF Advisor
Submitted 5 October 2012
Posted 5 October 2012

This paper by the productive group at Columbia increases our knowledge of the role of rare exon mutations in schizophrenia. The authors applied exome sequencing—a newish high-throughput sequencing technology—to trios consisting of both parents plus an offspring with schizophrenia. The authors focused on a subset of the genome (the “exome,” genetic regions believed to code for protein) on a subset of genetic variants (SNPs and insertion/deletion variants) of predicted functional significance, and on one type of inheritance (“de novo“ mutations, those absent in both parents and present in the offspring with schizophrenia).

The sample sizes are the largest yet reported for schizophrenia—231 affected trios and 34 controls. About 28 percent of these samples were reported in 2011 (Xu et al., 2011). A recent schizophrenia sequencing study (N = 166) from the Duke group was unrevealing (Need et al., 2012). The numbers in the Xu, 2012 paper are small compared to the three Nature trio studies for autism (see SRF related news story), an approximately threefold larger trio study for schizophrenia (in preparation), a case-control exome sequencing study for schizophrenia (total N ~5,000, in preparation), and a case-control exome chip study for schizophrenia (total N ~11,000, in preparation).

The authors reported:

more mutations with older fathers, as has been reported before (see SRF related news story). Note that advanced paternal age is an established risk factor for schizophrenia.

more de novo/predicted functional/exonic mutations in schizophrenia than in controls. However, the difference was slight, one-sided P = 0.03. One can quibble with the use of a one-tailed test (should never be used, in my opinion), but it is difficult to interpret this result unless paternal age is included as a covariate in this critical test.

an impressive set of bioinformatic and integrative analyses—see the paper for the large amount of work they did.

as might be predicted given the small sample size and the rarity of these sorts of mutations, there was no statistically significant pile-up of variants in specific genes. Hence, to my reading, the authors do not compellingly implicate any specific genes in the pathophysiology of schizophrenia. This conclusion is consistent with Need et al., 2012, and I note that the autism work implicated only a few genes (e.g., CHD8 and KATNAL2).

Note that the authors would disagree with the above, as they chose to focus on a set of genes that they thought stood out (reporting an aggregate P of 0.002), and the last third of the paper focuses on these genes. However, the human genetics community now insists on two critical points for implicating specific genes in associations with a disorder. The first is statistical significance, and the critical P value for an exome sequencing study is on the order of 1E-6. The second is replication. In my view, neither of these standards are achieved. However, their observations are intriguing, and may well eventually move us forward.

The key observation in this paper is the increased rate of de novo variation in schizophrenia cases. Is the increased rate indeed part of an etiological process? In other words, older fathers have an increased chance of exonic mutations, and these, in turn, increase risk for schizophrenia? Or are these merely hitch-hikers of no particularly biological import?

A major issue with exome studies is that there are so many predicted functional variants in apparently normal people. We all carry on the order of 100 exonic variants of predicted functional consequences with on the order of 20 genes that are probable knockouts. If part of the risk for schizophrenia indeed resides in the exome, very large studies will be required to identify such loci confidently. Moreover, published work on autism and unpublished work for type 2 diabetes, coronary artery disease, and schizophrenia suggest that this will require very large sample sizes, on the order of 100 times more than reported here. And, it is possible that the exome is not all that important for schizophrenia.

References:

Xu B, Roos JL, Dexheimer P, Boone B, Plummer B, Levy S, Gogos JA, Karayiorgou M. Exome sequencing supports a de novo mutational paradigm for schizophrenia. Nat Genet . 2011 Sep ; 43(9):864-8. Abstract

Need AC, McEvoy JP, Gennarelli M, Heinzen EL, Ge D, Maia JM, Shianna KV, He M, Cirulli ET, Gumbs CE, Zhao Q, Campbell CR, Hong L, Rosenquist P, Putkonen A, Hallikainen T, Repo-Tiihonen E, Tiihonen J, Levy DL, Meltzer HY, Goldstein DB. Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia. Am J Hum Genet . 2012 Aug 10 ; 91(2):303-12. Abstract

View all comments by Patrick Sullivan

Related News: Bigger Schizophrenia GWAS Yields More Hits

Comment by:  Sven Cichon
Submitted 30 August 2013
Posted 30 August 2013

This paper is an important addition to the psychiatric genetics literature. One important message of it is that increasing the GWAS sample size in a complex neuropsychiatric phenotype such as schizophrenia identifies more common risk loci.

In the first-wave schizophrenia mega-analysis two years ago (Schizophrenia Psychiatric Genome-Wide Association Study Consortium, 2011), five risk loci at genomewide significance were detected, and it was speculated that more would follow with larger sample sizes. In fact, by performing a meta-analysis of a new Swedish schizophrenia sample (about 5,000 patients and 6,000 controls) and the first-wave PGC sample (about 9,000 patients and 12,000 controls) plus follow-up/replication in large, independent samples, the authors now find 22 genomic loci at genomewide significance. This is another important step forward in schizophrenia genetics.

It is reassuring (and important for the scientific community to know) that there is support for some of the previously reported loci. As expected, the findings are getting much more consistent now with the increasing power of the samples. Interestingly, some loci pop up now at genomewide significance that were known from bipolar disorder or combined phenotype analyses (schizophrenia + bipolar), such as CACNA1C and CACNB2. Together with the finding that there is an enrichment of smaller p values in genes encoding calcium channel subunits, there is now growing evidence that calcium signaling is involved in both bipolar disorder and schizophrenia. Calcium signaling is a crucial neuronal process and relevant in a number of human diseases, as the authors nicely review. Importantly, calcium channel complexes may be useful for clinical translation (e.g., as drug targets).

Variation in another gene that was implicated in bipolar disorder before, NCAN, was found at genomewide significance in schizophrenia in the study by Ripke et al. (in fact, an association with schizophrenia was already reported earlier by Mühleisen et al., 2012). It seems that another "theme" of disease-relevant genes may be neurodevelopmental effects in both bipolar disorder and schizophrenia. The different lincRNAs implicated now among the 22 genomewide significant findings may also point in this direction.

What I find particularly interesting are the considerations regarding the much debated genetic architecture of schizophrenia. The authors’ simulations, although certainly still not perfectly exact, substantiate previous calculations that common SNPs make substantial contributions to the risk for schizophrenia.

To my knowledge, for the first time there are estimates regarding the absolute number of common SNPs that contribute to the etiology of schizophrenia: The authors estimate "6,300 to 10,200 independent and mostly common SNPs." While it is difficult to deduce the number of genes or functional units covered by these SNPs, several thousand are well possible. Many of these loci/genes will fall into the same biological pathways, and the identification of a subset of these will probably suffice to identify the most important biological processes. The authors estimate that the top 2,000 loci might be sufficient, and maybe it is even fewer. At the same time, they estimate that such a number of identified loci is not completely out of reach. Sixty thousand patients and 60,000 controls should have enough statistical power to identify between 400 and 1,100 common loci at genomewide significance. Psychiatrists will agree that a great collaborative effort will be required to recruit such a large number of patients. But it is not impossible. The next wave of the PGC schizophrenia group is already moving in this direction.

References:

Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium (2011) Genome-wide association study identifies five new schizophrenia loci. Nat Genet. 43:969-76. Abstract

Mühleisen TW, Mattheisen M, Strohmaier J, et al. (2012) Association between schizophrenia and common variation in neurocan (NCAN), a genetic risk factor for bipolar disorder. Schizophr Res. 138:69-73. Abstract

View all comments by Sven Cichon

Related News: Bigger Schizophrenia GWAS Yields More Hits

Comment by:  Ole A. AndreassenMartin Tesli
Submitted 6 October 2013
Posted 7 October 2013
  I recommend the Primary Papers

The recent genomewide association study (GWAS) by Ripke and co-workers is a very important contribution to our knowledge of the genetic underpinnings of schizophrenia. By adding ~5,000 schizophrenia cases and ~6,000 healthy controls from Sweden to the Psychiatric Genomics Consortium (PGC) results from 2011 (PGC, 2011), the authors identified 22 gene loci (including 13 novel) at genomewide significance. These findings confirm that previous schizophrenia GWAS have been statistically underpowered, and that increasing the sample size is a successful approach to bridge the gap between the high heritability estimates in schizophrenia and low variance explained by currently identified genetic variants.

With increasing sample size, consistency is also enhanced. Reassuringly, of the 100 most significant SNPs in the Sweden/PGC meta-analysis, 90 percent had the same sign. Moreover, previously reported signals from immune-related genes in the MHC region on chromosome 6 were confirmed, as well as genes encoding calcium channel subunits, miR-137, and targets of miR-137. Additionally, the authors found enrichment in an extended set of genes with predicted miR-137 target sites. The results also pointed to long intergenic noncoding RNAs (lincRNAs), as 13 out of 22 identified regions contain lincRNAs. Interestingly, there is evidence that lincRNAs have functions related to epigenetic regulation.

Using two newly developed methods—genomewide complex trait analysis (GCTA) and applied Bayesian polygenic analysis (ABPA)—the authors estimated that common variants account for 52 percent and 78 percent, respectively, of the phenotypic variation in schizophrenia. These numbers are, although imprecisely, in accordance with the high heritability estimates from meta-analyses on twin studies (81 percent) (Sullivan et al., 2003) and large epidemiological studies (64 percent) (Lichtenstein et al., 2009), and indicate that a substantial proportion of the genetic risk for schizophrenia can be explained by common variants identified in GWAS. With the ABPA method, the authors also estimated that between 6,300 and 10,200 SNPs explain 50 percent of the variance in schizophrenia susceptibility. This clearly shows the high polygenicity in schizophrenia.

The authors suggest that 60,000 schizophrenia cases and 60,000 controls are warranted to identify ~800 markers at genomewide significance level. With the combined effort from the PGC, this might be achievable, and a larger proportion of the hidden heritability will undoubtedly be revealed. However, when using the PGC schizophrenia sample as the discovery set and the Swedish sample as the test set, explained variance (Nagelkerke pseudo R2) was only ~0.06 (contrasted by an impressive significance level of 2 x 10-114). This is slightly disappointing, as the explained variance with similar methodology was found to be ~0.03 in a study by Purcell and co-workers in 2009 (Purcell et al., 2009). By increasing the sample size five times (~6,000 vs. ~30,000 individuals), explained variance has only increased from 3 to 6 percent. Although a further increase in the PGC sample will provide important information on risk variants, a refinement of the method is probably also needed to discover larger parts of the hidden heritability for the highly polygenic disorder schizophrenia. Such methods might include Bayesian models for weighing SNPs based on prior evidence, for example, related to pleiotropic effects (Andreassen et al., 2013) and genic annotation (Schork et al., 2013). A combination of large numbers and methodological refinement might prove particularly potent, both in terms of explaining more of the variance and identifying underlying molecular pathways.

References:

PGC. Genome-wide association study identifies five new schizophrenia loci. Nat Genet . 2011 Oct ; 43(10):969-76. Abstract

Andreassen OA, Thompson WK, Schork AJ, Ripke S, Mattingsdal M, Kelsoe JR, Kendler KS, O'Donovan MC, Rujescu D, Werge T, Sklar P, , , Roddey JC, Chen CH, McEvoy L, Desikan RS, Djurovic S, Dale AM. Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet . 2013 Apr ; 9(4):e1003455. Abstract

Lichtenstein P, Yip BH, Björk C, Pawitan Y, Cannon TD, Sullivan PF, Hultman CM. Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet . 2009 Jan 17 ; 373(9659):234-9. Abstract

Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, Sklar P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature . 2009 Aug 6 ; 460(7256):748-52. Abstract

Schork AJ, Thompson WK, Pham P, Torkamani A, Roddey JC, Sullivan PF, Kelsoe JR, O'Donovan MC, Furberg H, Schork NJ, Andreassen OA, Dale AM. All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs. PLoS Genet . 2013 Apr ; 9(4):e1003449. Abstract

Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry . 2003 Dec ; 60(12):1187-92. Abstract

View all comments by Ole A. Andreassen
View all comments by Martin Tesli