Schizophrenia Research Forum - A Catalyst for Creative Thinking

Beyond Cortex—Amygdala and Midbrain Dysfunction in Schizophrenia

8 January 2011. Two functional brain imaging studies of people with schizophrenia find abnormal activity in the amygdala, the brain region known for processing emotionally salient stimuli. In one study, anomalous activity was also found in the midbrain, which contains dopamine neurons that modulate activity throughout the brain. Inappropriate activity in these and related regions could impair emotion perception or underlie delusions, and may be fertile ground for schizophrenia research, which has been dominated by studies of prefrontal cortex and striatum.

One of the studies, led by Amy Pinkham while at Ruben and Raquel Gur's group at the University of Pennsylvania, Philadelphia, reports that activity in the amygdala is modulated differently in schizophrenia when study subjects view emotional facial expressions, depending on direction of eye gaze. Published online December 15 in the American Journal of Psychiatry, the study also found that in the schizophrenia group, some amygdala activity correlated with a measure of social and occupational functioning. The second study, led by Jeremy Hall at the University of Edinburgh, Scotland, appeared in the December issue of Archives of General Psychiatry. The researchers tracked activity in the amygdala and other regions during a classical conditioning paradigm. Not only did they find abnormal activation of the amygdala, midbrain, and ventral striatum, but the midbrain activity correlated with severity of delusions in the schizophrenia group. Together, the studies suggest that studying how emotional meaning is attributed to different kinds of stimuli could be a fruitful approach for understanding aspects of schizophrenia.

The eye gaze has it
Pinkham, who now has her own lab at Southern Methodist University in Dallas, Texas, and colleagues used functional MRI to measure neural activity in 35 participants with schizophrenia and 37 controls as they viewed faces with angry, fearful, or neutral expressions. Though previous studies had shown that the direction of gaze—either direct or averted—could modulate amygdala responses in schizophrenia (Kohler et al., 2008), this study was the first to manipulate both gaze and emotion.

Controls were better at accurately recognizing the emotion—fear or anger—in the facial expressions, getting it right for 83 percent of the faces compared to 74 percent by the schizophrenia group. For subjects with schizophrenia, the amygdala response while viewing these faces relative to a scrambled baseline face was significantly reduced compared to controls. Their responses to three other conditions—averted-gaze anger, direct-gaze fear, and averted-gaze fear—were within normal range, which contrasts with previous suggestions that the amygdala is generally underactive in schizophrenia (Li et al., 2010).

Within the schizophrenia group, amygdala activity in response to direct-gaze anger correlated with two different clinical measures: anhedonia and the Strauss-Carpenter outcome scale score, which measures social and occupational functioning. These amygdala responses were negatively correlated with anhedonia, with lower activations related to high ratings of anhedonia (r = -0.564, p <0.001), and positively correlated with the outcome score, with lower activations related to lower social and occupational functioning (r = 0.587, p <0.001).

Abnormal brain activation during learning
At the University of Edinburgh, first author Liana Romaniuk and colleagues measured activation in the amygdala and other brain regions in 20 participants with schizophrenia and 20 controls using an aversive conditioning task. This involved learning to associate a particular color with either an aversive image (e.g., a gun) or a neutral one (e.g., a wicker basket).

Though both control and patient groups learned to associate the appearance of a color with an aversive picture, their brain activity differed. While controls acquired a conditioned response in the amygdala to presentation of the color predicting an aversive image, the schizophrenia group did not. Further examination revealed abnormal activation of the midbrain and ventral striatum during conditioning in the schizophrenia group, and the midbrain responses correlated to delusional symptoms, as rated by the Positive and Negative Syndrome Scale (PANSS). This correlation stemmed largely from inappropriate midbrain responses to neutral conditioned stimuli in individuals with higher delusion scores, and remained significant after controlling for medication dosage. These findings support the idea that problems with assigning importance to stimuli appropriately may lead to delusional beliefs (Kapur, 2003).

Because the relationships between brain activation and clinical measures found in both studies are correlations, it is unclear whether these activations cause or reflect these symptoms. But the link emphasizes the relevance to schizophrenia, and argues that research could delve more deeply into the somewhat messy, "emotional" terrain of these subcortical brain systems.—Michele Solis.

References:
Pinkham AE, Loughead J, Ruparel K, Overton E, Gur RE, Gur RC. Abnormal Modulation of Amygdala Activity in Schizophrenia in Response to Direct- and Averted-Gaze Threat-Related Facial Expressions. Am J Psychiatry. 2010 Dec 15. Abstract

Romaniuk L, Honey GD, King JR, Whalley HC, McIntosh AM, Levita L, Hughes M, Johnstone EC, Day M, Lawrie SM, Hall J. Midbrain activation during Pavlovian conditioning and delusional symptoms in schizophrenia. Arch Gen Psychiatry. 2010 Dec; 67:1246-54. Abstract

Comments on Related News


Related News: A Tale of Two City Exposures and the Brain

Comment by:  John McGrath, SRF Advisor
Submitted 22 June 2011
Posted 22 June 2011

The findings from Lederbogen et al. are very thought provoking. The dissociation between the fMRI correlates of current versus early life urbanicity is unexpected. The authors have replicated their finding in an independent sample, reducing the chance that the finding was a type 1 error.

It is heartening to see important clues from epidemiology influencing fMRI research design. With respect to schizophrenia, the findings provide much-needed clues to the neurobiological correlates of urban birth (Pedersen and Mortensen, 2001; Pedersen and Mortensen, 2006; Pedersen and Mortensen, 2006). Somewhat to the embarrassment of the epidemiology research community, the link between urban birth and risk of schizophrenia has been an area of research where the strength of the empirical evidence has been much stronger than hypotheses proposed to explain the findings (McGrath and Scott, 2006; March et al., 2008). The new findings should trigger more focused research exploring the fMRI correlates in urban- versus rural-born individuals with schizophrenia.

References:

March D, Hatch SL, Morgan C, Kirkbride JB, Bresnahan M, Fearon P, Susser E. Psychosis and place. Epidemiol Rev . 2008 Jan 1 ; 30():84-100. Abstract

McGrath J, Scott J. Urban birth and risk of schizophrenia: a worrying example of epidemiology where the data are stronger than the hypotheses. Epidemiol Psichiatr Soc . 2006 Oct-Dec ; 15(4):243-6. Abstract

Pedersen CB, Mortensen PB. Evidence of a dose-response relationship between urbanicity during upbringing and schizophrenia risk. Arch Gen Psychiatry . 2001 Nov 1 ; 58(11):1039-46. Abstract

Pedersen CB, Mortensen PB. Are the cause(s) responsible for urban-rural differences in schizophrenia risk rooted in families or in individuals? Am J Epidemiol . 2006 Jun 1 ; 163(11):971-8. Abstract

Pedersen CB, Mortensen PB. Urbanization and traffic related exposures as risk factors for schizophrenia. BMC Psychiatry . 2006 Jan 1 ; 6():2. Abstract

View all comments by John McGrath

Related News: A Tale of Two City Exposures and the Brain

Comment by:  Elizabeth Cantor-Graae
Submitted 23 June 2011
Posted 23 June 2011

The study by Lederbogen et al. linking neural processes to epidemiology opens up an exciting avenue of inquiry, It suggests that exposure to urban upbringing could modify brain activity. Whether that could lead to schizophrenia per se remains to be seen.

Still, one might want to keep in mind that there is no evidence that urban-rural differences in schizophrenia risk are causally related to individual exposure. Pedersen and Mortensen (2006) showed that the association between urban upbringing and the development of schizophrenia is attributable both to familial-level factors as well as individual-level factors. Thus, the link between urbanicity and schizophrenia may be mediated by genetic factors, and if so, the social stressors shown by Lederbogen may in turn be related to those same genes.

Although it might be tempting to speculate whether Lederbogenís findings have implications for migrant research, the ďmigrant effectĒ does not seem neatly explained by urban birth/upbringing. To the contrary, our findings show that the dose-response relationship between urbanization and schizophrenia (Pedersen and Mortensen, 2001) could be replicated only among persons born in Denmark whose parents had both been born in Denmark, and not in second-generation immigrants (Cantor-Graae and Pederson, 2007). Second-generation immigrants had an increased risk of developing schizophrenia independently of urban birth/upbringing (Cantor-Graae and Pedersen, 2007).

References:

Pedersen CB, Mortensen PB. Are the cause(s) responsible for urban-rural differences in schizophrenia risk rooted in families or in individuals? Am J Epidemiol. 2006; 163:971-8. Abstract

Pedersen CB, Mortensen PB. Evidence of a dose-response relationship between urbanicity during upbringing and schizophrenia risk. Arch Gen Psychiatry. 2001; 58:1039-46. Abstract

Cantor-Graae E, Pedersen CB. Risk of schizophrenia in second-generation immigrants: a Danish population-based cohort study. Psychol Med. 2007; 37:485-94. Abstract

View all comments by Elizabeth Cantor-Graae

Related News: A Tale of Two City Exposures and the Brain

Comment by:  James Kirkbride
Submitted 27 June 2011
Posted 27 June 2011

Mannheim, Germany, has long played a pivotal role in unearthing links between the environment and schizophrenia (Hafner et al., 1969). Using administrative incidence data from Mannheim in 1965, Hafner and colleagues were amongst the first groups to independently verify Faris and Dunhamís seminal work from Chicago in the 1920s, which showed that hospitalized admission rates of schizophrenia were higher in progressively more urban areas of the city (Faris and Dunham, 1939). Now, almost 50 years later, Mannheimís historical pedigree in this area looks set to endure, following the publication of the landmark study by Lederbogen et al. in Nature, which reported for the first time associations of urban living and upbringing with increased brain activity amongst healthy volunteers in two brain regions involved in determining environmental threat and processing stress responses.

Tantalizingly, their work bridges epidemiology and neuroscience, and provides some of the first empirical data to directly implicate functional neural alterations in stress processing associated with living in urban environments. One important step will now be to discover whether such neural changes (following exposure to urban environments) are associated with clinical phenotypes, such as schizophrenia. This would support long-speculated paradigms of social stress (Selten and Cantor-Graae, 2005) as an important mechanism in a causal pathway between the environment and psychosis, although alternative environmental exposures in urban areas, including viral hypotheses and vitamin D, should not yet be excluded.

The work by Lederbogen et al. opens many avenues for possible study, including replication of their findings in clinical samples (via case-control designs) and using population-based rather than convenience samples. One of the greatest challenges in the social epidemiology of psychiatric disorders is to identify the specific suite of factors that underpin associations between the urban environment and the risk of clinical disorder. While Lederbogen et al. did not provide specific enlightenment on what these factors might be, their work also informs this search, because it suggests that focusing on factors likely to induce (or protect against) social stress would be potentially fruitful. To this end, their work should pave the way for mimetic studies, in both non-clinical and clinical populations, to investigate neural processing in relation to candidate social risk factors for psychiatric illness that were implicated in previous epidemiological studies (Cantor-Graae and Selten, 2005; March et al., 2008). These candidates may include migration or minority group membership (Coid et al., 2008), childhood traumas and other major life events (Kendler et al., 1992; Morgan et al., 2007), neighborhood socioeconomic deprivation (Croudace et al., 2000), income inequality (Boydell et al., 2004), and both individual-level social networks and neighborhood-level social cohesion and ethnic density (Kirkbride et al., 2008); some of these factors may also mitigate the effects of social stress.

The interface between social epidemiology and social neuroscience will also potentially provide new avenues by which to develop public health interventions. Presently, universal prevention strategies that focus on community-based interventions to prevent mental illness are not readily viable (Kirkbride et al., 2010), given both the absolute rarity of psychotic disorder and the relative ubiquity of broadly defined exposures such as urban living (many people live in urban environments, but only a handful of them will ever develop a psychotic illness). However, social neuroscience breakthroughs like those reported here may increase the viability of community-based public health initiatives by making it possible to move the focus of the intervention from preventing the clinical phenotype to preventing the abnormal neural changes associated with social-stress processing. Importantly, such strategies must also consider the possible benefits of enhanced social-stress processing in urban environments, which might be an important adaptation to more threatening environments. Because social stress may be associated with a range of neuropsychiatric and somatic disorders, public health strategies that target reductions in social stress rather than any single disorder may lead to significant improvements in population health across a range of morbidities. Such strategies, if justifiable, may also be cost effective, since a single intervention may prevent a range of disorders.

References:

Hafner H, Reimann H, Immich H, Martini H. Inzidenz seelischer Erkrankungen in Mannheim 1965. Soc Psychiatr. 1969;4:127-35.

Faris REL, Dunham HW. Mental disorders in urban areas. Chicago: University of Chicago Press; 1939.

Selten JP, Cantor-Graae E. Social defeat: risk factor for schizophrenia? Br J Psychiatry. 2005 August 1;187(2):101-2. Abstract

Cantor-Graae E, Selten J-P. Schizophrenia and Migration: A Meta-Analysis and Review. Am J Psychiatry. 2005 January 1;162(1):12-24. Abstract

March D, Hatch SL, Morgan C, Kirkbride JB, Bresnahan M, Fearon P, Susser E. Psychosis and Place. Epidemiol Rev. 2008;30:84-100. Abstract

Coid JW, Kirkbride JB, Barker D, Cowden F, Stamps R, Yang M, Jones PB. Raised incidence rates of all psychoses among migrant groups: findings from the East London first episode psychosis study. Arch Gen Psychiatry. 2008;65(11):1250-8. Abstract

Kendler KS, Neale MC, Kessler RC, Heath AC, Eaves LJ. Childhood parental loss and adult psychopathology in women. A twin study perspective. Arch Gen Psychiatry. 1992 Feb;49(2):109-16. Abstract

Morgan C, Kirkbride JB, Leff J, Craig T, Hutchinson G, McKenzie K, Morgan K, Dazzan P, Doody GA, Jones P, Murray R, Fearon P. Parental separation, loss and psychosis in different ethnic groups: a case-control study. Psychol Med. 2007;37(4):495-503. Abstract

Croudace TJ, Kayne R, Jones PB, Harrison GL. Non-linear relationship between an index of social deprivation, psychiatric admission prevalence and the incidence of psychosis. Psychol Med. 2000 Jan;30(1):177-85. Abstract

Boydell J, van Os J, McKenzie K, Murray RM. The association of inequality with the incidence of schizophrenia--an ecological study. Soc Psychiatry Psychiatr Epidemiol. 2004 Aug;39(8):597-9. Abstract

Kirkbride J, Boydell J, Ploubidis G, Morgan C, Dazzan P, McKenzie K, Murray RM, Jones PB. Testing the association between the incidence of schizophrenia and social capital in an urban area. Psychol Med. 2008;38(8):1083-94. Abstract

Kirkbride JB, Coid JW, Morgan C, Fearon P, Dazzan P, Yang M, Lloyd T, Harrison GL, Murray RM, Jones PB. Translating the epidemiology of psychosis into public mental health: evidence, challenges and future prospects. J Public Ment Health. 2010;9(2):4-14. Abstract

View all comments by James Kirkbride

Related News: A Tale of Two City Exposures and the Brain

Comment by:  Wim Veling
Submitted 5 July 2011
Posted 5 July 2011

This publication is interesting and important, as it is one of the first efforts to connect epidemiological findings to neuroscience. Both fields of research have made great progress over the last decades, but results were limited because epidemiologists and neuroscientists rarely joined forces.

Several risk factors that implicate preconceptional, prenatal, or early childhood exposures have been consistently related to schizophrenia in epidemiological studies, including paternal age at conception, early prenatal famine, urban birth, childhood trauma, and migration (Van Os et al., 2010). While some of these associations are likely to be causal, the mechanisms by which they are linked to schizophrenia are still largely unknown. A next phase of studies is required, the methods and measures of which link social environment to psychosis, brain function, and genes. The study by Lederbogen and colleagues is a fine example of such an innovative research design. Their findings are consistent with hypotheses of social stress mediating the relationship between environmental factors and schizophrenia. It stimulates further research in this direction.

Two key issues need to be addressed. First, measures of social pathways should be refined (March et al., 2008). Which aspects of the daily social environment contribute to the onset of psychotic symptoms, how do these symptoms develop, and which individual characteristics moderate this outcome? It is extremely difficult to investigate daily social environments, because they are highly complex, cannot be controlled, are never exactly the same, and are strongly influenced by the individualís behavior. Arguably, the only way to test mechanisms of psychotic responses to the social environment, and the moderators thereof, is to randomize individuals to controlled experimental social risk environments. Virtual reality (VR) technology, that is, substituting sense data from the natural world with sense data about an imaginary world that change in response to the userís actions in an interactive three-dimensional virtual world, offers the possibility to do so. Freeman pioneered VR in psychosis research, investigating safety and feasibility (Fornells-Ambrojo et al., 2008; Freeman, 2008); however, there are no studies investigating mechanisms of risk environments. Our group recently found in a small pilot study that virtual environments with high population density or low ethnic density appear to elicit more physiological and subjective stress, as well as higher level of paranoia towards avatars (Brinkman et al., 2011). Larger studies and more experiments are needed.

Second, how are early social experiences translated to brain dysfunction? Another recent development has been in the field of epigenetics. Epigenetic mechanisms may mediate the effects of environmental risk factors, as the epigenetic status of the genome can be modified in response to the environment during embryonic growth, and probably also in the early years of life (Heijmans et al., 2009). Preliminary evidence suggests that epigenetic differences may be related to schizophrenia (Mill et al., 2008), but these epigenetic studies have not yet included environmental exposures. Epidemiologic studies may be a tool to detect epigenetic mechanisms in schizophrenia. Environmental exposures such as prenatal famine or migration may be used, as these exposures have been related to schizophrenia, can be measured with sufficient precision, offer homogeneously exposed populations for study, and had plausible biological pathways suggested for them (Veling et al. Environmental studies as a tool for detecting epigenetic mechanisms in schizophrenia. In: Petronis A, Mill J, editors. Epigenetics and Human Health: Brain, Behavior and Epigenetics. Heidelberg: Springer; 2011). Comparing the epigenome of exposed and unexposed schizophrenia cases and controls may help us to understand how gene expression affects disease risk.

As far fetched and futuristic as these research designs perhaps may seem, the publication of Lederbogen and colleagues shows that novel approaches can be very fruitful. If we improve interdisciplinary collaboration and use new technology, we may advance from associations to understanding in etiologic schizophrenia research.

References:

Van Os J, Kenis G, Rutten BPF. The environment and schizophrenia. Nature. 2010;468:203-12. Abstract

March D, Hatch SL, Morgan C, Kirkbride JB, Bresnahan M, Fearon P, et al. Psychosis and place. Epidemiological Reviews. 2008;30:84-100. Abstract

Fornells-Ambrojo M, Barker C, Swapp D, Slater M, Antley A, Freeman D. Virtual Reality and persecutory delusions: safety and feasibility. Schizophrenia Research. 2008;104:228-36. Abstract

Freeman D. Studying and treating schizophrenia using Virtual Reality: a new paradigm. Schizophrenia Bulletin. 2008;34:605-10. Abstract

Brinkman WP, Veling W, Dorrestijn E, Sandino G, Vakili V, Van der Gaag M. Virtual reality to study responses to social environmental stressors in individuals with and without psychosis. Studies in Health Technology and Informatics. 2011;167:86-91. Abstract

Heijmans BT, Tobi EW, Lumey LH, Slagboom PE. The epigenome; archive of the prenatal environment. Epigenetics. 2009;4:526-31. Abstract

Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, et al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. American Journal of Human Genetics. 2008;82:696-711. Abstract

Veling W, Lumey LH, Heijmans BT, Susser E. Environmental studies as a tool for detecting epigenetic mechanisms in schizophrenia. In: Petronis A, Mill J, editors. Epigenetics and Human Health: Brain, Behavior and Epigenetics. Heidelberg: Springer; 2011.

View all comments by Wim Veling

Related News: A Tale of Two City Exposures and the Brain

Comment by:  Dana March
Submitted 7 July 2011
Posted 7 July 2011

The paper by Lederbogen and colleagues represents a critical step in elucidating the mechanisms underlying the consistent association between urban upbringing and adult schizophrenia. As John McGrath rightly points out, the urbanicity findings have long been in search of hypotheses. We understand little about what the effects of place on psychosis might actually be (March et al., 2008). What it is about place that matters for neurodevelopment and for schizophrenia in particular can be greatly enriched by a translational approach linking epidemiological findings to clinical and experimental science (Weissman et al., 2011), which will in turn help us formulate and refine our hypotheses about why place matters. Lederbogen and colleagues have opened the door in Mannheim. Where we go from here will require creativity, persistence, and collaboration.

References:

March D, Hatch SL, Morgan C, Kirkbride JB, Bresnahan M, Fearon P, Susser E. Psychosis and place. Epidemiol Rev . 2008 Jan 1 ; 30:84-100. Abstract

Weissman MM, Brown AS, Talati A. Translational epidemiology in psychiatry: linking population to clinical and basic sciences. Arch Gen Psychiatry . 2011 Jun 1 ; 68(6):600-8. Abstract

View all comments by Dana March