Schizophrenia Research Forum - A Catalyst for Creative Thinking

Meta-analysis Supports Case for Cannabis in Etiology of Psychosis

8 August 2007. “We believe that there is now enough evidence to inform people that using cannabis could increase their risk of developing a psychotic illness later in life,” write the authors of a literature review in the July 28 Lancet. The new meta-analysis and review by Stanley Zammit and Theresa H. M. Moore, both of Cardiff University, and other researchers in the United Kingdom addresses methodological issues that could account for observed causal links between psychosis and cannabis. In an accompanying editorial, Merete Nordentoft and Carsten Hjorthøj of Copenhagen University Hospital in Denmark write, “The assessment of adjustment for confounding factors and transitory effects of cannabis intoxication is done more thoroughly than in previous reviews.”

Researchers have noted many links between psychosis and cannabis. For instance, people with schizophrenia seem to be more likely than others to abuse substances (Krystal et al., 2006). Furthermore, a Dutch study (Ferdinand et al., 2005) showed that cannabis use predicts future psychotic symptoms in individuals who have never experienced them before, and that people with psychotic symptoms are more likely to start using cannabis. In their current paper, first author Moore and associates note that the drug’s effects on dopaminergic, GABAergic, and glutamatergic neurons echo the abnormalities seen in people with psychotic disorders. Yet, the question of whether using cannabis causes psychotic disorders has resisted easy answers.

A 2005 meta-analysis, led by Cécile Henquet of Maastricht University in the Netherlands (Henquet et al., 2005), estimated that previous cannabis use doubles the risk of developing psychosis, independently of possible confounding factors. However, Zammit and colleagues took further steps to rule out alternative explanations, such as the possibility that researchers were confusing short-term effects of cannabis intoxication with symptoms of psychosis. In addition, they looked at affective as well as psychotic outcomes.

The Lancet reviewers combed electronic databases, scoured reference lists in papers, and consulted with experts to identify population-based longitudinal studies, as well as case-control studies nested within longitudinal designs. They searched nine databases for reports of human studies in any language that discussed cannabis in relation to psychosis, schizophrenia, depression, or affective disorders.

The search for psychosis studies yielded 11 reports, which presented findings from five adult population-based cohorts and two birth cohorts. Some looked only at psychotic symptoms; others examined psychotic disorders, in which symptoms impair functioning.

Moore and associates pooled the results of the seven studies to conduct a meta-analysis, finding an increased risk of psychotic outcomes in people who had ever used cannabis, even after controlling for a host of possible confounders such as premorbid markers of schizophrenia risk (adjusted odds ratio = 1.41, 95 percent confidence interval = 1.20-1.65). An analysis of the six studies that assessed frequency of use found results consistent with a dose-response relationship in that individuals who often used cannabis were about twice as likely as others to have a psychotic outcome (adjusted odds ratio = 2.09, 95 percent confidence interval = 1.54-2.84).

Recognizing that psychotic symptoms can occur without full-blown psychosis, the reviewers zeroed in on the studies that looked at the risk of developing a psychotic disorder. They included a Swedish study that looked at schizophrenia as an outcome; a Dunedin, New Zealand, study that examined schizophreniform disorder; and a Dutch study on psychotic disorders. Their analysis of combined data from the three studies showed an increased likelihood of psychotic disorders in individuals who had ever used cannabis (adjusted odds ratio = 2.58, 95 percent confidence interval = 1.08-6.13).

“Because most of the studies for psychosis excluded people with psychosis at baseline, the observed associations are unlikely to reflect reverse causation,” Zammit and colleagues write. Still, they wondered whether acute intoxication effects could have inflated the estimates of a causal link. Despite efforts in most of the psychosis studies to limit such effects, the researchers warn that they can be hard to differentiate in daily cannabis users.

The studies of depressive outcomes looked at 15 cohorts, but produced inconsistent results concerning a possible causal role of cannabis. Many of them lacked statistical power. However, an analysis of pooled results from the studies that assessed use frequency found an increased risk in frequent users compared to non-users (adjusted odds ratio = 1.49, 95 percent confidence interval = 1.15-1.94).

Seven studies looked at anxiety. Two found a connection between anxiety outcomes and cannabis use that survived adjustment for confounders.

Some of the studies of affective outcomes tried to control for reverse causation by excluding subjects with affective symptoms at baseline or statistically controlling for baseline measures of the outcome, but seven did neither. None of the studies on affective outcomes reported attempts to rule out intoxication effects, but some of their diagnostic methods may have excluded subjects with acute symptoms of intoxication.

Some researchers have raised the possibility that cannabis use by young people, whose brains are still developing, may be particularly likely to increase psychosis risk (see Viveros et al., 2005 for a discussion of animal studies on this topic). According to Moore and colleagues, “Arguments for why earlier use of cannabis might have more harmful effects are intuitively compelling, but no robust evidence supports this view.” If age at first use does matter, limited evidence, from the Dunedin cohort, suggests that it could be through effects of the catechol-O-methyltransferase (COMT) gene in those who started using before age 18. The gene’s involvement in dopamine catabolism has made it a target of schizophrenia research (for more about the dopamine hypothesis in schizophrenia, see SRF Current Hypotheses discussion by Anissa Abi-Dargham).

Moore and colleagues believe that further observational studies will do little to resolve any lingering doubt about whether cannabis causes psychosis. Nor do they see much potential for randomized, controlled trials of medical cannabis to answer this question because of differences between medical and recreational forms of the drug. Rather, they contend, “animal models of long-term effects of cannabis on neuropsychological domains relative to psychotic or affective states” would shed more light.

Putting the review into perspective, Nordentoft and Hjorthøj note that its “odds ratio results for psychosis are more reliable and also more modest than seen in previous publications.” Even so, Zammit and colleagues write, “Although individual lifetime risk of chronic psychotic disorders such as schizophrenia, even in people who use cannabis regularly, is likely to be low (less than 3 percent), cannabis use can be expected to have a substantial effect on psychotic disorders at a population level because exposure to this drug is so common.”—Victoria L. Wilcox.

References:
Moore THM, Zammit S, Lingford-Hughes A, Barnes TRE, Jones PB, Burke M, Lewis G. Cannabis use and risk of psychotic or affective mental health outcomes: A systematic review. Lancet. 2007 July 28; 370:319-328. Abstract

Nordentoft M, Hjorthøj C. Cannabis use and risk of psychosis in later life. Lancet. 2007 July 28; 370:293-294. Abstract

Comments on News and Primary Papers
Comment by:  Jim van Os
Submitted 8 August 2007
Posted 8 August 2007

This excellent review confirms the previous meta-analysis by Henquet et al. (2005) and as such does not add anything new. The importance lies in the UK context: previously the Lancet has been mostly skeptical with regard to this issue. The fact that the leading UK medical journal now also allows these findings to see daylight is a significant event and helps stimulate further funding for the effort that several groups worldwide have started working on over the last five years: the search for the mechanism explaining the link.

View all comments by Jim van OsComment by:  John McGrath, SRF Advisor
Submitted 9 August 2007
Posted 10 August 2007
  I recommend the Primary Papers

It is reassuring to see that the results of the latest meta-analysis (Moore et al., 2007) are consistent with previous meta-analyses, and that the various meta-analyses are broadly consistent with the now much-tortured primary data. Despite the meta-analysis fatigue, the results are too important to ignore.

When thinking about the impact of cannabis on schizophrenia frequency measures, it is important to remember that cannabis use may translate to an increase in the prevalence of active psychosis via two mechanisms. The data suggest that as the prevalence of cannabis use increases in a population, the incidence of schizophrenia should also increase (Hickman et al., 2007). Furthermore, in those with established schizophrenia, cannabis use is associated with poorer outcomes (i.e., reduced remission rates). Thus, from a modeling perspective, increased cannabis use could lead to an increase in the prevalence of active psychosis via two mechanisms (i.e., increased “inflow” and decreased “outflow”) (McGrath and Saha, 2007).

The prevalence of active psychosis in the community may be “under the influence” of cannabis from more than one perspective.

References:

Moore THM, Zammit S, Lingford-Hughes A, Barnes TRE, Jones PB, Burke M, Lewis G. Cannabis use and risk of psychotic or affective mental health outcomes: A systematic review. Lancet. 2007 July 28; 370:319-328. Abstract

McGrath J, Saha S. Thought experiments on the incidence and prevalence of schizophrenia “under the influence” of cannabis. Addictions 2007 Apr;102(4):514-5. Abstract

Hickman M, Vickerman P, Macleod J, Kirkbride J, Jones PB. Cannabis and schizophrenia: model projections of the impact of the rise in cannabis use on historical and future trends in schizophrenia in England and Wales. Addiction. 2007 Apr;102(4):597-606. Abstract

View all comments by John McGrathComment by:  Dana MarchEzra Susser (SRF Advisor)
Submitted 20 August 2007
Posted 20 August 2007

The recent meta-analysis in the Lancet (Moore et al., 2007) regarding cannabis use and psychotic or affective mental health outcomes is, indeed, a necessary contribution. It is the first systematic review restricted to longitudinal studies of cannabis use and mental health outcomes. For this addition to the contours of the literature, Zammit and colleagues are to be commended.

We may be more optimistic than the authors, however, about the potential for future longitudinal studies to shed further light on the question of causality, and perhaps more cautious about the present state of the evidence. Given the public health and policy implications, we propose a concerted effort to complete observational studies that are designed to rule out the main alternative explanations for the association (e.g., genetic or social factors that independently influence both cannabis use and psychosis). The Swedish conscript study (Zammit et al., 2002) is a fine example of one such study. We should also be considering natural experiments and designs based on instrumental variables enabled by in order to complement this work. For instance, we might capitalize on situations created by policy changes that affect the availability—and therefore use—of cannabis in order to examine the impact on the development of psychosis. Whether at the individual or the population level, both creativity and rigor are required.

References:

Moore TH, Zammit S, Lingford-Hughes A, Barnes TR, Jones PB, Burke M, Lewis G. Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet. 2007 Jul 28;370(9584): 319-28. Abstract

Zammit S, Allebeck P, Andreasson S, Lundberg I, Lewis G. Self reported cannabis use as a risk factor for schizophrenia in Swedish conscripts of 1969: historical cohort study. BMJ. 2002 Nov 23;325 (7374):1199. Abstract

View all comments by Dana March
View all comments by Ezra SusserComment by:  Amresh Shrivastava
Submitted 20 October 2007
Posted 24 October 2007

Current interest in cannabis and the onset of psychosis is laudable. The Lancet paper no doubt establishes a causal link based upon what has been known in the literature (Raphael et al., 2005; Roberts et al., 2007; Rey et al., 2004; Wittchen et al., 2007). The authors need to be congratulated for taking extreme care to incorporate most of the studies and also for making conclusions with a sense of skepticism. That is where further questions arise.

1. Cannabis is used only in certain cultures and known to be involved in a maximum 50 percent of cases of psychosis, schizophrenia, and schizophreniform psychosis (Gregg et al., 2007). In that sense, are there two different phenotypes of schizophrenia, a) where exposure to cannabis is necessarily a factor and b) where a different set of potentiating or precipitating factors work, not cannabis?

2. Even if we focus only on the first possibility, there are few unanswered questions such as, what are the concurrent clinical conditions along with cannabis abuse? Do these patients have cognitive dysfunction? Is that reflective of broader brain mechanism changes?

3. There seems to be no reliable biological explanation as to why exposure to cannabis should precipitate psychosis. Cannabis is one of the most commonly used illicit drugs. Its active compound “cannabidols” has 64 active isomers, each having differing effects on health and behavior. There is strong support for a link between cannabis and development—exacerbation of psychosis as well as other mental health conditions (e.g., anxiety, depression). Further research is needed to determine the underlying neurochemical processes and their possible contributions to etiology, as well as the social factors that contribute to the increasing use of cannabis by young people.

4. There is a theory that preexisting cognitive dysfunction is a core feature of schizophrenia. Accepting this, there are no studies to show “causal relationship” between cannabis and cognitive dysfunction.

The current levels of information and understanding, though collected over last 25-30 years of research, are far from adequate to establish any direct relationship except “mere association.” It is hoped that more precise biological, imaging, and neuropsychological studies would be able to throw fresh light on this important area of research.

Acute cannabis administration can induce memory impairments, sometimes persisting months following abstinence. There is no evidence that residual effects on cognition remain after years of abstinence. The scarce literature on neuroimaging, mainly done in non-psychotic populations, shows little evidence that cannabis has effects on brain anatomy. Acute effects of cannabis include increases of cerebral blood flow, whereas long-term effects of cannabis include attenuation of cerebral blood flow. In animals Δ9-tetrahydrocannabinol enhances dopaminergic neurotransmission in brain regions known to be implicated in psychosis. Studies in humans show that genetic vulnerability may add to increased risk of developing psychosis and cognitive impairments following cannabis consumption. Δ9-tetrahydrocannabinol induces psychotic-like states and memory impairments in healthy volunteers (Linszen et al., 2007).

On the basis of six studies, it is concluded that there was insufficient evidence to prove conclusively that long-term cannabis use causes or does not cause residual abnormalities. The results of several reviews were also inconclusive as to whether cannabis use during adolescence may have a lasting effect on cognitive functioning and brain structure. However, it could not rule out that a) certain cognitive and cerebral abnormalities existed in patients before cannabis use began and b) that patients were suffering from subacute effects of cannabis (Weeda et al., 2006).

Continued cannabis use by persons with schizophrenia predicts a small increase in psychotic symptom severity but not vice versa (Degenhardt et al., 2007). Currently, there is a lot of interest in cannabis use as a risk factor for the development of schizophrenia. Cognitive dysfunction associated with long-term or heavy cannabis use is similar in many respects to the cognitive endophenotypes that have been proposed as vulnerability markers of schizophrenia. In this situation, we need to examine the similarities between these in the context of the neurobiology underlying cognitive dysfunction, particularly implicating the endogenous cannabinoid system, which plays a significant role in attention, learning, and memory, and in general, inhibitory regulatory mechanisms in the brain. Closer examination of the cognitive deficits associated with specific parameters of cannabis use and interactions with neurodevelopmental stages and neural substrates will better inform our understanding of the nature of the association between cannabis use and psychosis. The theoretical and clinical significance of further research in this field is enhancing our understanding of underlying pathophysiology and improving the provision of treatments for substance use and mental illness (Solowij et al., 2007). Many studies now show a robust and consistent association between cannabis consumption and the ulterior development of psychosis. Furthermore, our better understanding of cannabis biology allows the proposal of a plausible hypothetical model, based notably on possible interactions between cannabis and dopaminergic neurotransmission (Jockers-Scherubl, 2006). Do they suffer from other disorders, which are underlying or may be causal or comorbid, and do these comorbid conditions also have neurocognitive changes, e.g., psychosis, ADHD, LD, Tourette disorder, and other movement disorders, or depression? Is there an interrelationship among these factors to cause abuse and degree of cannabis consumption?

References:

Raphael B, Wooding S, Stevens G, Connor J. Comorbidity: cannabis and complexity. J Psychiatr Pract. 2005 May; 11(3): 161-7.

Roberts RE, Roberts CR, Xing Y. Comorbidity of substance use disorders and other psychiatric disorders among adolescents: Evidence from an epidemiologic survey. Drug Alcohol Depend. 2007 Apr;88 Suppl 1:S4-13. Epub 2007 Feb 1. Abstract

Rey JM, Martin A, Krabman P. Is the party over? Cannabis and juvenile psychiatric disorder: the past 10 years. J Am Acad Child Adolesc Psychiatry. 2004 Oct; 43(10): 1194-205. Abstract

Wittchen HU, Frohlich C, Behrendt S. Cannabis use and cannabis use disorders and their relationship to mental disorders: A 10-year prospective-longitudinal community study in adolescents. Drug Alcohol Depend. 2007 Apr;88 Suppl 1:S60-70. Epub 2007 Jan 25. Abstract

Gregg L, Barrowclough C, Haddock G. Reasons for increased substance use in psychosis. Clin Psychol Rev. 2007 May;27(4):494-510. Epub 2007 Jan 19. Abstract

Linszen D, van Amelsvoort T. Cannabis and psychosis: an update on course and biological plausible mechanisms. Curr Opin Psychiatry. 2007 Mar; 20(2): 116-20. Abstract

Weeda MR, Peters BD, De Haan L, Linszen DH. Residual neuropsychological, structural and functional brain abnormalities after long-term cannabis use] Tijdschr Psychiatr. 2006; 48(3): 185-93. Abstract

Degenhardt L, Tennant C, Gilmour S, Schofield D, Nash L, Hall W,McKay D. The temporal dynamics of relationships between cannabis, psychosis and depression among young adults with psychotic disorders: findings from a 10-month prospective study. Psychol Med. 2007 Feb 9; 1-8.

Solowij N, Michie PT. Cannabis and cognitive dysfunction: parallels with endophenotypes of schizophrenia? J Psychiatry Neurosci. 2007 Jan; 32(1): 30-52. Abstract

Jockers-Scherubl MC. [Schizophrenia and cannabis consumption: epidemiology and clinical symptoms] Prax Kinderpsychol Kinderpsychiatr. 2006; 55(7): 533-43. Abstract

Curtis L, Rey-Bellet P, Merlo MC. [Cannabis and psychosis] Rev Med Suisse. 2006 Sep 20; 2(79): 2099-100, 2102-3.

Costentin J. [Neurobiology of cannabis--recent data enlightening driving disturbances] Ann Pharm Fr. 2006 May; 64(3): 148-59. Abstract

View all comments by Amresh Shrivastava

Comments on Related News


Related News: Research Roundup —The Tapestry of Environmental Influences in Psychosis

Comment by:  John McGrath, SRF Advisor
Submitted 5 November 2010
Posted 5 November 2010

The large study from Nuevo and colleagues is very thought provoking. There was substantial between-site variation in response to various psychosis-screening items. Assuming that endorsement of these items is a mix of: 1) "true" psychotic-like experiences, 2) "true" responses that are understandable from the perspective of local cultures and beliefs, and 3) innocent misinterpretations of the questions, why is there such marked variation? For example, why do 46 percent of respondents from Nepal endorse at least one psychotic-like experience and a third report auditory hallucinations?

It seems self-evident that populations with strong religious and/or cultural beliefs related to psychotic-like experiences might endorse psychosis-screening items more readily (type 2 in the above list). But could it be feasible that these same populations might also “kindle” psychotic experiences in vulnerable people? This notion is pure speculation, but we should remain mindful that dopaminergic pathways related to psychosis are vulnerable to the process of endogenous sensitization (Laruelle, 2000).

What does it mean to be a member of a cultural group that is more “prone” to psychotic-like experiences? Tanya Luhrmann, an anthropologist based at Stanford University, has examined individuals attending evangelical churches who “hear” the voice of God during prayer (Luhrmann et al., 2010). The vignettes suggest that some individuals reported more “hearing the voice of God” after improving their prayer skills. Practice makes perfect, but could it also kindle pathways related to schizophrenia?

Regardless of the underlying mechanisms, understanding variations in these symptoms is a fascinating topic worthy of more multidisciplinary research.

References:

Laruelle M. The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. Brain Res Brain Res Rev. 2000;31(2-3):371-84. Abstract

Luhrmann TM, Nusbaum H, Thisted R. The absorption hypothesis: learning to hear God in evangelical Christianity. American Anthropologist. 2010;112 (1):66-78.

View all comments by John McGrath

Related News: Research Roundup —The Tapestry of Environmental Influences in Psychosis

Comment by:  Tanya Luhrmann
Submitted 12 November 2010
Posted 12 November 2010

It seems to me that there may be two different patterns that show up in these large epidemiological studies: the psychotic continuum and phenomena associated with absorption. Absorption is basically a capacity for/interest in being caught up in your imagination. It is associated with hypnotizability and dissociation, but not identical to them (Tellegen and Atkinson, 1974).

In my own work on evangelical Christianity, I identify a pattern in which people report hallucination-like phenomena that are rare, brief, and not distressing (as opposed to the pattern associated with psychotic disorder, in which the hallucinations are often frequent, extended, and distressing). Those who report hearing God’s voice audibly or seeing the wing of an angel are also more likely to score highly on the Tellegen absorption scale (Luhrmann et al., 2010). This relationship between unusual experiences and absorption also shows up in a significant relationship between absorption and the Posey-Loesch hearing voices scale when these scales are given to undergraduates. Among undergraduates, the rates for hallucination-like phenomena are also consistently far higher than the Nuevo paper reports, perhaps because neither the absorption scale nor the Posey-Loesch scale seems to probe for pathology (Luhrmann, forthcoming).

I am not the only one to have found a significant association between unusual sensory experiences and absorption. Aleman and Laroi (2008) report that a handful of other researchers have also found significant correlations between hallucination scales and the absorption scale. As a result of this work, I think that there may be different pathways to hallucination-like phenomena—some pathological, others less so.

Yet, I also wonder whether there is indeed something like “priming” psychosis, as John suggested. This would arise if there were some looseness in the relationship between psychosis and dissociation, which there appears to be. At least that's the way I interpret some of the phenomena that Romme and Escher (1993) report. If there is some kind of loose relationship, it would suggest that someone could have an absorption/dissociation response to trauma that would look psychotic; it might also suggest that an intensely absorbing negative imaginative experience (being pursued by demons, e.g.) might contribute to a vulnerable person exhibiting more psychotic-like symptoms.

How would we begin to pull this apart?

References:

Aleman A, Laroi F. Hallucinations: The science of idiosyncratic perception. Washington, DC: American Psychological Association, 2008.

Luhrmann TM. When God speaks back. New York: Knopf, forthcoming.

Luhrmann TM, Nusbaum H, Thisted R. The absorption hypothesis: learning to hear God in evangelical Christianity. American Anthropologist. 2010;112 (1):66-78.

Romme M, Escher S. Accepting voices. London: Mind, 1993.

Tellegen A, Atkinson G. Openness to absorbing and self-altering experiences (“absorption”): a trait related to hypnotic susceptibility. J Abnorm Psychol. 1974;83(3):268-77. Abstract

View all comments by Tanya Luhrmann

Related News: Research Roundup —The Tapestry of Environmental Influences in Psychosis

Comment by:  Mary Cannon
Submitted 15 November 2010
Posted 15 November 2010

This beautifully written piece serves to excite interest in the fascinating epidemiology of schizophrenia. In our search for the “missing heritability” of schizophrenia, we don’t have to look too far for clues. There are many contained in this piece. It just requires some Sherlock Holmes-type deductive reasoning to put them all together now!

The realization that psychotic symptoms (or psychotic-like experiences) can be used as a proxy for schizophrenia risk has opened up new vistas for exploration (Kelleher and Cannon, 2010). For instance, the paper by Nuevo and colleagues will provide a fertile ground for testing ecological hypotheses on the etiology of schizophrenia—such as examining cross-national vitamin D levels (McGrath et al.) or fish oil consumption. Geneticists have yet to appreciate the potential value of studying such symptoms. Ian Kelleher, Jack Jenner, and I have argued in a recent editorial that the non-clinical psychosis phenotype provides us with a population in which to test hypotheses about the evolutionary benefit of psychosis genes (Kelleher et al., 2010; see also Nesse, 2004). This non-clinical psychosis phenotype gives rise to the possibility of moving beyond just-so stories into the realm of testable hypotheses.

References:

Kelleher I, Cannon M. Psychotic-like experiences in the general population: characterizing a high-risk group for psychosis. Psychol Med. 2010 May 19:1-6. Abstract

Kelleher I, Jenner JA, Cannon M. Psychotic symptoms in the general population - an evolutionary perspective. Br J Psychiatry. 2010 Sep;197(3):167-9.

Nesse RM. Cliff-edged fitness functions and the persistence of schizophrenia. Behav Brain Sci. 2004;27:862-3.

View all comments by Mary Cannon

Related News: Research Roundup —The Tapestry of Environmental Influences in Psychosis

Comment by:  Jean-Paul Selten
Submitted 17 November 2010
Posted 17 November 2010
  I recommend the Primary Papers

With interest, I read Victoria Wilcox's summary of some thought-provoking papers published this year. It seems that schizophrenia, like cancer, has many different causes. I would like to point out that three of the studies (Zammit et al., 2010; Wicks et al., 2010; Schofield et al., 2010) support the idea that social defeat and/or social exclusion increase risk. The paper by Zammit et al. showed this in an elegant way: being different from the mainstream, no matter on what account, increased the subject's risk. The next step is to show that social exclusion has an impact on an individual's dopamine function. My group is examining this in young adults with an acquired hearing impairment, using SPECT.

References:

Zammit S, Lewis G, Rasbash J, Dalman C, Gustafsson J-E, Allebeck P. Individuals, schools, and neighborhood: a multilevel longitudinal study of variation in incidence of psychotic disorders. Arch Gen Psychiatry. 2010 Sep;67(9):914-22. Abstract

Wicks S, Hjern A, Dalman C. Social risk or genetic liability for psychosis? A study of children born in Sweden and reared by adoptive parents. Am J Psychiatry. 2010 Oct;167(10):1240-6. Epub 2010 Aug 4. Abstract

Schofield P, Ashworth M, Jones R. Ethnic isolation and psychosis: re-examining the ethnic density effect. Psychol Med. 2010 Sep 22:1-7. Abstract

View all comments by Jean-Paul Selten

Related News: Research Roundup —The Tapestry of Environmental Influences in Psychosis

Comment by:  Chris Carter
Submitted 26 November 2010
Posted 26 November 2010
  I recommend the Primary Papers

I have been collecting diverse references for environmental risk factors in schizophrenia at Schizophrenia Risk Factors. These include many prenatal influences due to maternal infection, usually with some sort of virus, or immune activation with fever. Several animal studies have shown that infection or immune activation in mice can produce schizophrenia-like symptoms in the offspring. Toxoplasmosis has often been cited as a risk factor in adulthood.

Many of the genes implicated in schizophrenia are also involved in the life cycles of these pathogens, and interactions between genes and risk factors can together contribute to endophenotypes; for example, MICB and Herpes simplex infection have single and combined effects on grey matter volume in the prefrontal cortex.

Over 600 genes have been associated with schizophrenia. When these were pumped through a Kegg pathway analysis, the usual suspects (neuregulin, dopamine, and glutamate pathways, among others) figure highly in the list of pathways. Immune-related pathways are also highly represented, as are many pathogen entry pathways, including that for toxoplasmosis, which heads the list. Some of the more exotic pathways, for example, Chaga’s disease, should be considered as generic, as well as specific.

These Kegg-generated data suggest that there are strong relationships between genes and risk factors. Perhaps stratification of GWAS data in relation to infection could take this into account.

References:

Bortolato M, Godar SC. Animal models of virus-induced neurobehavioral sequelae: recent advances, methodological issues, and future prospects. Interdiscip Perspect Infect Dis . 2010 Jan 1 ; 2010():380456. Abstract

Carter CJ. Schizophrenia susceptibility genes directly implicated in the life cycles of pathogens: cytomegalovirus, influenza, herpes simplex, rubella, and Toxoplasma gondii. Schizophr Bull . 2009 Nov 1 ; 35(6):1163-82. Abstract

Fatemi SH, Emamian ES, Kist D, Sidwell RW, Nakajima K, Akhter P, Shier A, Sheikh S, Bailey K. Defective corticogenesis and reduction in Reelin immunoreactivity in cortex and hippocampus of prenatally infected neonatal mice. Mol Psychiatry . 1999 Mar 1 ; 4(2):145-54. Abstract

Fatemi SH, Pearce DA, Brooks AI, Sidwell RW. Prenatal viral infection in mouse causes differential expression of genes in brains of mouse progeny: a potential animal model for schizophrenia and autism. Synapse . 2005 Aug 1 ; 57(2):91-9. Abstractx

Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M. Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry . 2006 Mar 15 ; 59(6):546-54. Abstract

Prasad KM, Bamne MN, Shirts BH, Goradia D, Mannali V, Pancholi KM, Xue B, McClain L, Yolken RH, Keshavan MS, Nimgaonkar VL. Grey matter changes associated with host genetic variation and exposure to Herpes Simplex Virus 1 (HSV1) in first episode schizophrenia. Schizophr Res . 2010 May 1 ; 118(1-3):232-9. Abstract

Yolken RH, Torrey EF. Are some cases of psychosis caused by microbial agents? A review of the evidence. Mol Psychiatry . 2008 May 1 ; 13(5):470-9. Abstract

Zuckerman L, Weiner I. Maternal immune activation leads to behavioral and pharmacological changes in the adult offspring. J Psychiatr Res . 2005 May 1 ; 39(3):311-23. Abstract

View all comments by Chris Carter

Related News: Forty-Year Study Reveals Patterns of Cognitive Decline in Schizophrenia

Comment by:  Angus MacDonald, SRF Advisor
Submitted 23 September 2013
Posted 23 September 2013

The Dunedin study is not only a rich and rare resource for testing developmental hypotheses, but it has also been mined with ingenuity and resourcefulness over the years by Avshalom Caspi, Terrie Moffitt, and their colleagues to provide a number of provocative findings. In this case, they use the continuity of the sample and its multiple-informant design to test a number of useful hypotheses about the development of cognitive impairments in schizophrenia. Their population-based cohort of over 1,000 children yielded 31 cases of tightly defined schizophrenia by age 38. (The fact that this is over 3 percent of the sample, the authors argue, is explained by the comprehensiveness of their methods, suggesting that lower epidemiological estimates may underrepresent lifetime population risks.)

Their findings provide a particularly clear example of a moderate, generalized deficit in cognitive ability well before the onset of illness that, after onset, leads to further declines in fluid, but not crystalized intelligence. The example is clear because it addresses the diagnostic specificity of the deficit—the pattern was different for children later diagnosed with depression or mild cognitive impairments—and it is corroborated by the reports from others’ throughout their lives. The findings reinforce efforts by the U.S. NIH and FDA to target cognitive impairments as a symptom of interest for patients with schizophrenia.

The findings hold important methodological lessons for schizophrenia researchers, too. As pointed out by Paul Meehl in 1971, psychopathologists who co-vary or control for factors influenced by the illness may make a systematic mistake. This kind of control variable sets up false equivalences by comparing the most able patients to the least able controls.

View all comments by Angus MacDonald

Related News: Forty-Year Study Reveals Patterns of Cognitive Decline in Schizophrenia

Comment by:  James Gold, SRF Advisor
Submitted 25 September 2013
Posted 25 September 2013

The recent paper by Meier et al. is a powerful confirmation of several observations that have been in the literature for many years. First, cognitive impairment is evident from early in development in people who go on to develop schizophrenia. Second, there is a loss of intellectual function that occurs in those people at risk who later become ill. Third, this "illness-associated" impairment appears to maximally impact more "fluid" intellectual functions and largely spares "crystallized" forms of verbal knowledge (however, those functions are not fully spared, as there is evidence of subnormal performance levels from early in development).

Thus, what Meier et al. have shown is not new, but it is the first time that these key findings have all been demonstrated in the same subjects followed over time in a population-based sample. The inclusion of a group of depressed patients as well as a mild cognitive impairment control group are innovations that enhance confidence that this is an effect related to schizophrenia in particular rather than psychopathology or cognitive limitations in general. Unexpectedly, this study also found a very sizeable number of people meeting diagnostic criteria for schizophrenia who appear to have been untreated with antipsychotics for extended time periods but did receive treatment for other mental health problems. It will be interesting to learn more about the life course and treatment history of this unusual group of people.

View all comments by James Gold