Schizophrenia Research Forum - A Catalyst for Creative Thinking
Home Profile Membership/Get Newsletter Log In Contact Us
 For Patients & Families
What's New
Recent Updates
SRF Papers
Current Papers
Search All Papers
Search Comments
News
Research News
Conference News
Plain English
Forums
Current Hypotheses
Idea Lab
Online Discussions
Virtual Conferences
Interviews
Resources
What We Know
SchizophreniaGene
Animal Models
Drugs in Trials
Research Tools
Grants
Jobs
Conferences
Journals
Community Calendar
General Information
Community
Member Directory
Researcher Profiles
Institutes and Labs
About the Site
Mission
History
SRF Team
Advisory Board
Support Us
How to Cite
Fan (E)Mail
The Schizophrenia Research Forum web site is sponsored by the Brain and Behavior Research Foundation and was created with funding from the U.S. National Institute of Mental Health.
Research News
back to News Search
Research Brief: From Fibroblast to Neuron in One Easy Step

Adapted from a story that originally appeared on the Alzheimer Research Forum.

1 February 2010. It’s time to cut out the middleman—why go from fibroblasts, to induced pluripotent stem cells, to neurons, if one can skip straight to the payload? Researchers from the Stanford University School of Medicine in Palo Alto, California, reported January 27 in Nature a way to turn fibroblasts directly into induced neuronal, or iN, cells. Led by first author Thomas Vierbuchen and principal investigator Marius Wernig, the scientists screened 19 candidate transcription factors to find a cocktail of three that push cells toward a neuronal fate. The iN cells make neuron-specific proteins, support action potentials, and form synapses, the researchers report.

The investigators started with mice that carry the green fluorescent protein (GFP) gene under control of a neuronal promoter, so they could easily see when cells switched on the neuron signal. They isolated embryonic fibroblasts from these mice to test out the iN protocol.

Vierbuchen and colleagues selected 19 candidate genes specific to neural tissues, or involved in neural development or epigenetic reprogramming. They constructed lentiviral vectors for each gene, and then pooled the lot. Next, they used this pool to transform the mouse fibroblasts, reasoning that some subset of the transformed cells would hit upon the right combination to turn neural. A month later, some of the cells had neuronal morphology and GFP fluorescence.

From there, the researchers narrowed down the necessary genes to a set of five: Ascl1, Myt1l, Zic1, Olig2, and Brn2 (also called Pou3f2). Five-factor iN cells expressed neuronal markers including MAP2, GABA, GLUT1, NeuN, and synapsin. Patch-clamp experiments confirmed they were capable of producing action potentials. They were able to form signal-carrying synapses with other neurons as well as with each other.

Finally, Wernig and colleagues further reduced the number of transcription factors necessary to make iN cells by trying all possible three-gene combinations. They settled on a set of Ascl1, Myt1l, and Brn2. These three were able to induce iN formation at up to 19.5 percent efficiency, the authors report. “Generation of iN cells from non-neuronal lineages could have important implications for studies of neural development, neurological disease modeling, and regenerative medicine,” they wrote.—Amber Dance.

Reference:
Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. Direct conversion of fibroblasts to functional neurons by defined factors. Nature. 2010. Abstract

 
Comments on News and Primary Papers
Comment by:  John McGrath, SRF Advisor
Submitted 8 February 2010 Posted 8 February 2010
  I recommend the Primary Papers

This is a remarkable achievement. If we can translate this...  Read more


View all comments by John McGrath
Submit a Comment on this News Article
Make a comment on this news article. 

If you already are a member, please login.
Not sure if you are a member? Search our member database.

*First Name  
*Last Name  
Affiliation  
Country or Territory  
*Login Email Address  
*Confirm Email Address  
*Password  
*Confirm Password  
Remember my Login and Password?  
Get SRF newsletter with recent commentary?  
 
Enter the code as it is shown below:
This code helps prevent automated registrations.

I recommend the Primary Papers

Please note: A member needs to be both registered and logged in to submit a comment.

Comment:

(If coauthors exist for this comment, please enter their names and email addresses at the end of the comment.)

References:


SRF News
SRF Comments
Text Size
Reset Text Size
Share/Bookmark
Copyright © 2005- 2014 Schizophrenia Research Forum Privacy Policy Disclaimer Disclosure Copyright